{"title":"剪裁电荷转移在金属-有机界面使用设计师肖克利表面状态","authors":"Anubhab Chakraborty, and , Oliver L.A. Monti*, ","doi":"10.1021/acs.jpclett.5c0051710.1021/acs.jpclett.5c00517","DOIUrl":null,"url":null,"abstract":"<p >Metal–organic interfaces determine critical processes in organic electronic devices. The frontier molecular orbitals (highest occupied and lowest unoccupied molecular orbital, HOMO and LUMO) are crucial in determining charge-injection and charge-collection processes into and from the organic semiconductor films. Here we show that we are able to tune the interfacial electronic structure of a strongly interacting interfacial system formed by adsorption of the electron acceptor 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN, C<sub>18</sub>N<sub>12</sub>) on Ag thin films on Cu(111). The thickness-dependent Shockley surface state emerging on this layered metallic system couples to the LUMO, which allows precise control over the energetic position and filling of the charge-transfer interface state relative to the Fermi level (<i>E</i><sub>F</sub>). Our ability to tune the interfacial electronic structure while maintaining the structure of the molecular film represents an important step toward designing organic semiconductor interfaces.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 16","pages":"4081–4089 4081–4089"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Charge-Transfer at Metal–Organic Interfaces Using Designer Shockley Surface States\",\"authors\":\"Anubhab Chakraborty, and , Oliver L.A. Monti*, \",\"doi\":\"10.1021/acs.jpclett.5c0051710.1021/acs.jpclett.5c00517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal–organic interfaces determine critical processes in organic electronic devices. The frontier molecular orbitals (highest occupied and lowest unoccupied molecular orbital, HOMO and LUMO) are crucial in determining charge-injection and charge-collection processes into and from the organic semiconductor films. Here we show that we are able to tune the interfacial electronic structure of a strongly interacting interfacial system formed by adsorption of the electron acceptor 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN, C<sub>18</sub>N<sub>12</sub>) on Ag thin films on Cu(111). The thickness-dependent Shockley surface state emerging on this layered metallic system couples to the LUMO, which allows precise control over the energetic position and filling of the charge-transfer interface state relative to the Fermi level (<i>E</i><sub>F</sub>). Our ability to tune the interfacial electronic structure while maintaining the structure of the molecular film represents an important step toward designing organic semiconductor interfaces.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 16\",\"pages\":\"4081–4089 4081–4089\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00517\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00517","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tailoring Charge-Transfer at Metal–Organic Interfaces Using Designer Shockley Surface States
Metal–organic interfaces determine critical processes in organic electronic devices. The frontier molecular orbitals (highest occupied and lowest unoccupied molecular orbital, HOMO and LUMO) are crucial in determining charge-injection and charge-collection processes into and from the organic semiconductor films. Here we show that we are able to tune the interfacial electronic structure of a strongly interacting interfacial system formed by adsorption of the electron acceptor 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN, C18N12) on Ag thin films on Cu(111). The thickness-dependent Shockley surface state emerging on this layered metallic system couples to the LUMO, which allows precise control over the energetic position and filling of the charge-transfer interface state relative to the Fermi level (EF). Our ability to tune the interfacial electronic structure while maintaining the structure of the molecular film represents an important step toward designing organic semiconductor interfaces.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.