酸浸碳化法回收废锂电池石墨阳极

Arindam Sen, Kundan Kumar, Sudip Kumar, Chandan Ghanty, Sanchayan Mahato, Pratik Swarup Dash, Koushik Biswas and Rajen Kundu*, 
{"title":"酸浸碳化法回收废锂电池石墨阳极","authors":"Arindam Sen,&nbsp;Kundan Kumar,&nbsp;Sudip Kumar,&nbsp;Chandan Ghanty,&nbsp;Sanchayan Mahato,&nbsp;Pratik Swarup Dash,&nbsp;Koushik Biswas and Rajen Kundu*,&nbsp;","doi":"10.1021/acssusresmgt.4c0034010.1021/acssusresmgt.4c00340","DOIUrl":null,"url":null,"abstract":"<p >We demonstrated the regeneration of a graphite anode from spent lithium-ion batteries and reused the same as energy storage material. The disordered graphite material is regenerated by inert atmosphere carbonization at high temperatures. Raman and XPS analyses confirm the morphological improvement of the carbonized graphite compared to spent and acid-treated graphite. Acid-treated graphite exhibited discharge and charge capacities of 428 and 364 mAh/g, respectively, in the first cycle at a 0.1C rate, and discharge and charge capacities decreased to 319 and 318 mAh/g, respectively, after 50 cycles at a 0.1C rate, whereas the carbonized graphite exhibited a discharge capacity of 444 mAh/g in the first cycle, 396 mAh/g in the second cycle, 388 mAh/g in third cycle, and 364 mAh/g after 50 cycles at a 0.1C rate. Incremental capacity analysis revealed that the state of health of the cell is restored, and performance increases when the C rate is decreased to C/10 from 1C after 100 cycles. The calculated apparent diffusion coefficients of lithium ions (D<sub>Li</sub>) corresponding to anodic and cathodic electrochemical reactions were found to be 2.27 × 10<sup>–7</sup> and 1.36 × 10<sup>–7</sup> cm<sup>2</sup>/s, respectively, comparable with the literature’s reported values.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"2 4","pages":"642–650 642–650"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reviving Graphite Anode from Spent Li-Ion Batteries via Acid Leaching and Carbonization Methodology\",\"authors\":\"Arindam Sen,&nbsp;Kundan Kumar,&nbsp;Sudip Kumar,&nbsp;Chandan Ghanty,&nbsp;Sanchayan Mahato,&nbsp;Pratik Swarup Dash,&nbsp;Koushik Biswas and Rajen Kundu*,&nbsp;\",\"doi\":\"10.1021/acssusresmgt.4c0034010.1021/acssusresmgt.4c00340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We demonstrated the regeneration of a graphite anode from spent lithium-ion batteries and reused the same as energy storage material. The disordered graphite material is regenerated by inert atmosphere carbonization at high temperatures. Raman and XPS analyses confirm the morphological improvement of the carbonized graphite compared to spent and acid-treated graphite. Acid-treated graphite exhibited discharge and charge capacities of 428 and 364 mAh/g, respectively, in the first cycle at a 0.1C rate, and discharge and charge capacities decreased to 319 and 318 mAh/g, respectively, after 50 cycles at a 0.1C rate, whereas the carbonized graphite exhibited a discharge capacity of 444 mAh/g in the first cycle, 396 mAh/g in the second cycle, 388 mAh/g in third cycle, and 364 mAh/g after 50 cycles at a 0.1C rate. Incremental capacity analysis revealed that the state of health of the cell is restored, and performance increases when the C rate is decreased to C/10 from 1C after 100 cycles. The calculated apparent diffusion coefficients of lithium ions (D<sub>Li</sub>) corresponding to anodic and cathodic electrochemical reactions were found to be 2.27 × 10<sup>–7</sup> and 1.36 × 10<sup>–7</sup> cm<sup>2</sup>/s, respectively, comparable with the literature’s reported values.</p>\",\"PeriodicalId\":100015,\"journal\":{\"name\":\"ACS Sustainable Resource Management\",\"volume\":\"2 4\",\"pages\":\"642–650 642–650\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Resource Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了从废锂离子电池中再生石墨阳极,并将其重新用作储能材料。对无序石墨材料进行了高温惰性气氛碳化再生。拉曼和XPS分析证实,与废石墨和酸处理石墨相比,碳化石墨的形态有所改善。酸处理石墨在0.1C倍率下,第一次循环放电容量为428 mAh/g,充电容量为364 mAh/g,在0.1C倍率下,50次循环放电容量分别降至319 mAh/g和318 mAh/g,而碳化石墨在0.1C倍率下,第一次循环放电容量为444 mAh/g,第二次循环放电容量为396 mAh/g,第三次循环放电容量为388 mAh/g, 50次循环放电容量为364 mAh/g。增量容量分析表明,在100次循环后,当C率从1C降低到C/10时,电池恢复了健康状态,性能有所提高。计算得到的锂离子(DLi)对应于阳极和阴极电化学反应的表观扩散系数分别为2.27 × 10-7和1.36 × 10-7 cm2/s,与文献报道值相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reviving Graphite Anode from Spent Li-Ion Batteries via Acid Leaching and Carbonization Methodology

Reviving Graphite Anode from Spent Li-Ion Batteries via Acid Leaching and Carbonization Methodology

We demonstrated the regeneration of a graphite anode from spent lithium-ion batteries and reused the same as energy storage material. The disordered graphite material is regenerated by inert atmosphere carbonization at high temperatures. Raman and XPS analyses confirm the morphological improvement of the carbonized graphite compared to spent and acid-treated graphite. Acid-treated graphite exhibited discharge and charge capacities of 428 and 364 mAh/g, respectively, in the first cycle at a 0.1C rate, and discharge and charge capacities decreased to 319 and 318 mAh/g, respectively, after 50 cycles at a 0.1C rate, whereas the carbonized graphite exhibited a discharge capacity of 444 mAh/g in the first cycle, 396 mAh/g in the second cycle, 388 mAh/g in third cycle, and 364 mAh/g after 50 cycles at a 0.1C rate. Incremental capacity analysis revealed that the state of health of the cell is restored, and performance increases when the C rate is decreased to C/10 from 1C after 100 cycles. The calculated apparent diffusion coefficients of lithium ions (DLi) corresponding to anodic and cathodic electrochemical reactions were found to be 2.27 × 10–7 and 1.36 × 10–7 cm2/s, respectively, comparable with the literature’s reported values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信