具有生物相容性的多噻吩基非金属电催化剂促进高效二氧化碳转化

Xianghai Bian, Yang Ye, Sulin Ni, Bin Yang, Yang Hou, Lecheng Lei, Min Yao* and Zhongjian Li*, 
{"title":"具有生物相容性的多噻吩基非金属电催化剂促进高效二氧化碳转化","authors":"Xianghai Bian,&nbsp;Yang Ye,&nbsp;Sulin Ni,&nbsp;Bin Yang,&nbsp;Yang Hou,&nbsp;Lecheng Lei,&nbsp;Min Yao* and Zhongjian Li*,&nbsp;","doi":"10.1021/cbe.4c0015610.1021/cbe.4c00156","DOIUrl":null,"url":null,"abstract":"<p >In a hybrid microbial–inorganic catalysis system, H<sub>2</sub> evolution reaction (HER) electrocatalysts are coupled with microorganisms to achieve the highly efficient conversion of CO<sub>2</sub> to value-added chemicals using H<sub>2</sub> as an electron mediator. However, currently developed HER electrocatalysts suffer from poor biocompatibility, hindering the performance of the system. This study presents a N- and Si-doped polythiophene nanocomposite (PTh-NSi) as a nonmetal HER electrocatalyst with biocompatibility for use in a hybrid microbial–inorganic catalysis system. By coupling PTh-NSi with <i>Ralstonia eutropha</i> H16, conversion of CO<sub>2</sub> to poly-β-hydroxybutyrate with a maximum yield of 662.99 ± 27.46 mg/L was achieved. The PTh-NSi electrocatalyst demonstrated HER performance in bacterial media, minimal reactive oxygen species production, and no heavy metal ion leaching, ensuring biocompatibility with <i>R. eutropha</i> H16. The interactions between PTh-NSi and <i>R. eutropha</i> H16 were revealed. This work highlights an approach to designing biocompatible catalysts for hybrid microbial–inorganic catalysis systems, offering the potential for sustainable CO<sub>2</sub> conversion.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"229–240 229–240"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00156","citationCount":"0","resultStr":"{\"title\":\"Polythiophene-Based Nonmetal Electrocatalyst with Biocompatibility to Boost Efficient CO2 Conversion\",\"authors\":\"Xianghai Bian,&nbsp;Yang Ye,&nbsp;Sulin Ni,&nbsp;Bin Yang,&nbsp;Yang Hou,&nbsp;Lecheng Lei,&nbsp;Min Yao* and Zhongjian Li*,&nbsp;\",\"doi\":\"10.1021/cbe.4c0015610.1021/cbe.4c00156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In a hybrid microbial–inorganic catalysis system, H<sub>2</sub> evolution reaction (HER) electrocatalysts are coupled with microorganisms to achieve the highly efficient conversion of CO<sub>2</sub> to value-added chemicals using H<sub>2</sub> as an electron mediator. However, currently developed HER electrocatalysts suffer from poor biocompatibility, hindering the performance of the system. This study presents a N- and Si-doped polythiophene nanocomposite (PTh-NSi) as a nonmetal HER electrocatalyst with biocompatibility for use in a hybrid microbial–inorganic catalysis system. By coupling PTh-NSi with <i>Ralstonia eutropha</i> H16, conversion of CO<sub>2</sub> to poly-β-hydroxybutyrate with a maximum yield of 662.99 ± 27.46 mg/L was achieved. The PTh-NSi electrocatalyst demonstrated HER performance in bacterial media, minimal reactive oxygen species production, and no heavy metal ion leaching, ensuring biocompatibility with <i>R. eutropha</i> H16. The interactions between PTh-NSi and <i>R. eutropha</i> H16 were revealed. This work highlights an approach to designing biocompatible catalysts for hybrid microbial–inorganic catalysis systems, offering the potential for sustainable CO<sub>2</sub> conversion.</p>\",\"PeriodicalId\":100230,\"journal\":{\"name\":\"Chem & Bio Engineering\",\"volume\":\"2 4\",\"pages\":\"229–240 229–240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00156\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem & Bio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbe.4c00156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.4c00156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在微生物-无机混合催化体系中,H2析出反应(HER)电催化剂与微生物耦合,以H2作为电子介质实现CO2向增值化学品的高效转化。然而,目前开发的HER电催化剂存在生物相容性差的问题,影响了系统的性能。本研究提出了一种N和si掺杂的多噻吩纳米复合材料(PTh-NSi)作为具有生物相容性的非金属HER电催化剂,用于微生物-无机混合催化体系。通过偶联PTh-NSi与富营养Ralstonia eutropha H16,实现了CO2转化为聚β-羟基丁酸酯的最大产率为662.99±27.46 mg/L。PTh-NSi电催化剂在细菌培养基中表现出HER性能,产生最小的活性氧,无重金属离子浸出,确保了与真滋养菌H16的生物相容性。揭示了PTh-NSi与富营养菌H16之间的相互作用。这项工作强调了为混合微生物-无机催化系统设计生物相容性催化剂的方法,为可持续的二氧化碳转化提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polythiophene-Based Nonmetal Electrocatalyst with Biocompatibility to Boost Efficient CO2 Conversion

In a hybrid microbial–inorganic catalysis system, H2 evolution reaction (HER) electrocatalysts are coupled with microorganisms to achieve the highly efficient conversion of CO2 to value-added chemicals using H2 as an electron mediator. However, currently developed HER electrocatalysts suffer from poor biocompatibility, hindering the performance of the system. This study presents a N- and Si-doped polythiophene nanocomposite (PTh-NSi) as a nonmetal HER electrocatalyst with biocompatibility for use in a hybrid microbial–inorganic catalysis system. By coupling PTh-NSi with Ralstonia eutropha H16, conversion of CO2 to poly-β-hydroxybutyrate with a maximum yield of 662.99 ± 27.46 mg/L was achieved. The PTh-NSi electrocatalyst demonstrated HER performance in bacterial media, minimal reactive oxygen species production, and no heavy metal ion leaching, ensuring biocompatibility with R. eutropha H16. The interactions between PTh-NSi and R. eutropha H16 were revealed. This work highlights an approach to designing biocompatible catalysts for hybrid microbial–inorganic catalysis systems, offering the potential for sustainable CO2 conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信