Robert J. Ewart, Michael L. Nastac, Pablo J. Bilbao, Thales Silva, Luís O. Silva, Alexander A. Schekochihin
{"title":"无碰撞等离子体中普遍非麦克斯韦平衡的松弛","authors":"Robert J. Ewart, Michael L. Nastac, Pablo J. Bilbao, Thales Silva, Luís O. Silva, Alexander A. Schekochihin","doi":"10.1073/pnas.2417813122","DOIUrl":null,"url":null,"abstract":"Generic equilibria are derived for turbulent relaxing plasmas via an entropy-maximization procedure that accounts for the short-time conservation of certain collisionless invariants. The conservation of these collisionless invariants endows the system with a partial “memory” of its prior conditions but is imperfect on long time scales due to the development of a turbulent cascade to small scales, which breaks the precise conservation of phase volume, making this memory imprecise. The equilibria are still determined by the short-time collisionless invariants, but the invariants themselves are driven to a universal form by the nature of the turbulence. This is numerically confirmed for the case of beam instabilities in one-dimensional electrostatic plasmas, where sufficiently strong turbulence appears to cause the distribution function of particle energies to develop a universal power-law tail, with exponent −2.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"35 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relaxation to universal non-Maxwellian equilibria in a collisionless plasma\",\"authors\":\"Robert J. Ewart, Michael L. Nastac, Pablo J. Bilbao, Thales Silva, Luís O. Silva, Alexander A. Schekochihin\",\"doi\":\"10.1073/pnas.2417813122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generic equilibria are derived for turbulent relaxing plasmas via an entropy-maximization procedure that accounts for the short-time conservation of certain collisionless invariants. The conservation of these collisionless invariants endows the system with a partial “memory” of its prior conditions but is imperfect on long time scales due to the development of a turbulent cascade to small scales, which breaks the precise conservation of phase volume, making this memory imprecise. The equilibria are still determined by the short-time collisionless invariants, but the invariants themselves are driven to a universal form by the nature of the turbulence. This is numerically confirmed for the case of beam instabilities in one-dimensional electrostatic plasmas, where sufficiently strong turbulence appears to cause the distribution function of particle energies to develop a universal power-law tail, with exponent −2.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2417813122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2417813122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Relaxation to universal non-Maxwellian equilibria in a collisionless plasma
Generic equilibria are derived for turbulent relaxing plasmas via an entropy-maximization procedure that accounts for the short-time conservation of certain collisionless invariants. The conservation of these collisionless invariants endows the system with a partial “memory” of its prior conditions but is imperfect on long time scales due to the development of a turbulent cascade to small scales, which breaks the precise conservation of phase volume, making this memory imprecise. The equilibria are still determined by the short-time collisionless invariants, but the invariants themselves are driven to a universal form by the nature of the turbulence. This is numerically confirmed for the case of beam instabilities in one-dimensional electrostatic plasmas, where sufficiently strong turbulence appears to cause the distribution function of particle energies to develop a universal power-law tail, with exponent −2.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.