切线可展面与K3地毯的切线可展面协同作用

IF 0.9 1区 数学 Q2 MATHEMATICS
Jinhyung Park
{"title":"切线可展面与K3地毯的切线可展面协同作用","authors":"Jinhyung Park","doi":"10.2140/ant.2025.19.1029","DOIUrl":null,"url":null,"abstract":"<p>We give simple geometric proofs of Aprodu, Farkas, Papadima, Raicu and Weyman’s theorem on syzygies of tangent-developable surfaces of rational normal curves and Raicu and Sam’s result on syzygies of K3 carpets. As a consequence, we obtain a quick proof of Green’s conjecture for general curves of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math> over an algebraically closed field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> char</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math> or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> char</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">)</mo>\n<mo>≥</mo><mo stretchy=\"false\">⌊</mo><mo stretchy=\"false\">(</mo><mi>g</mi>\n<mo>−</mo> <mn>1</mn><mo stretchy=\"false\">)</mo><mo>∕</mo><mn>2</mn><mo stretchy=\"false\">⌋</mo></math>. Our approach provides a new way to study tangent-developable surfaces in general. Along the way, we show the arithmetic normality of tangent-developable surfaces of arbitrary smooth projective curves of large degree. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"219 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syzygies of tangent-developable surfaces and K3 carpets via secant varieties\",\"authors\":\"Jinhyung Park\",\"doi\":\"10.2140/ant.2025.19.1029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give simple geometric proofs of Aprodu, Farkas, Papadima, Raicu and Weyman’s theorem on syzygies of tangent-developable surfaces of rational normal curves and Raicu and Sam’s result on syzygies of K3 carpets. As a consequence, we obtain a quick proof of Green’s conjecture for general curves of genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi></math> over an algebraically closed field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> char</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <mn>0</mn></math> or <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> char</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">)</mo>\\n<mo>≥</mo><mo stretchy=\\\"false\\\">⌊</mo><mo stretchy=\\\"false\\\">(</mo><mi>g</mi>\\n<mo>−</mo> <mn>1</mn><mo stretchy=\\\"false\\\">)</mo><mo>∕</mo><mn>2</mn><mo stretchy=\\\"false\\\">⌋</mo></math>. Our approach provides a new way to study tangent-developable surfaces in general. Along the way, we show the arithmetic normality of tangent-developable surfaces of arbitrary smooth projective curves of large degree. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"219 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.1029\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1029","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了Aprodu、Farkas、Papadima、Raicu和Weyman关于有理法向曲线切线可展曲面合边定理的简单几何证明,以及Raicu和Sam关于K3地毯合边定理的简单几何证明。因此,我们在代数闭域k上,当char (k)= 0或char (k)≥⌊(g−1)∕2⌋时,得到了g属一般曲线的格林猜想的一个快速证明。我们的方法为研究切线可展曲面提供了一种新的方法。同时,给出了任意大次光滑投影曲线的切可展曲面的算术正态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Syzygies of tangent-developable surfaces and K3 carpets via secant varieties

We give simple geometric proofs of Aprodu, Farkas, Papadima, Raicu and Weyman’s theorem on syzygies of tangent-developable surfaces of rational normal curves and Raicu and Sam’s result on syzygies of K3 carpets. As a consequence, we obtain a quick proof of Green’s conjecture for general curves of genus g over an algebraically closed field k with char (k ) = 0 or char (k ) (g 1)2. Our approach provides a new way to study tangent-developable surfaces in general. Along the way, we show the arithmetic normality of tangent-developable surfaces of arbitrary smooth projective curves of large degree.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信