{"title":"切线可展面与K3地毯的切线可展面协同作用","authors":"Jinhyung Park","doi":"10.2140/ant.2025.19.1029","DOIUrl":null,"url":null,"abstract":"<p>We give simple geometric proofs of Aprodu, Farkas, Papadima, Raicu and Weyman’s theorem on syzygies of tangent-developable surfaces of rational normal curves and Raicu and Sam’s result on syzygies of K3 carpets. As a consequence, we obtain a quick proof of Green’s conjecture for general curves of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math> over an algebraically closed field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> k</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> char</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>k</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math> or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> char</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>k</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">)</mo>\n<mo>≥</mo><mo stretchy=\"false\">⌊</mo><mo stretchy=\"false\">(</mo><mi>g</mi>\n<mo>−</mo> <mn>1</mn><mo stretchy=\"false\">)</mo><mo>∕</mo><mn>2</mn><mo stretchy=\"false\">⌋</mo></math>. Our approach provides a new way to study tangent-developable surfaces in general. Along the way, we show the arithmetic normality of tangent-developable surfaces of arbitrary smooth projective curves of large degree. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"219 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syzygies of tangent-developable surfaces and K3 carpets via secant varieties\",\"authors\":\"Jinhyung Park\",\"doi\":\"10.2140/ant.2025.19.1029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give simple geometric proofs of Aprodu, Farkas, Papadima, Raicu and Weyman’s theorem on syzygies of tangent-developable surfaces of rational normal curves and Raicu and Sam’s result on syzygies of K3 carpets. As a consequence, we obtain a quick proof of Green’s conjecture for general curves of genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi></math> over an algebraically closed field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> k</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> char</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <mn>0</mn></math> or <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> char</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">)</mo>\\n<mo>≥</mo><mo stretchy=\\\"false\\\">⌊</mo><mo stretchy=\\\"false\\\">(</mo><mi>g</mi>\\n<mo>−</mo> <mn>1</mn><mo stretchy=\\\"false\\\">)</mo><mo>∕</mo><mn>2</mn><mo stretchy=\\\"false\\\">⌋</mo></math>. Our approach provides a new way to study tangent-developable surfaces in general. Along the way, we show the arithmetic normality of tangent-developable surfaces of arbitrary smooth projective curves of large degree. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"219 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.1029\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1029","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Syzygies of tangent-developable surfaces and K3 carpets via secant varieties
We give simple geometric proofs of Aprodu, Farkas, Papadima, Raicu and Weyman’s theorem on syzygies of tangent-developable surfaces of rational normal curves and Raicu and Sam’s result on syzygies of K3 carpets. As a consequence, we obtain a quick proof of Green’s conjecture for general curves of genus over an algebraically closed field with or . Our approach provides a new way to study tangent-developable surfaces in general. Along the way, we show the arithmetic normality of tangent-developable surfaces of arbitrary smooth projective curves of large degree.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.