40hz感觉刺激增强阿尔茨海默病小鼠模型导航过程中CA3-CA1协调和前瞻性编码

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Abigail L. Paulson, Lu Zhang, Ashley M. Prichard, Annabelle C. Singer
{"title":"40hz感觉刺激增强阿尔茨海默病小鼠模型导航过程中CA3-CA1协调和前瞻性编码","authors":"Abigail L. Paulson, Lu Zhang, Ashley M. Prichard, Annabelle C. Singer","doi":"10.1073/pnas.2419364122","DOIUrl":null,"url":null,"abstract":"40 Hz sensory stimulation (“flicker”) has emerged as a new technique to potentially mitigate pathology and improve cognition in mouse models of Alzheimer’s disease (AD) pathology. However, it remains unknown how 40 Hz flicker affects neural codes essential for memory. Accordingly, we investigate the effects of 40 Hz flicker on neural representations of experience in the hippocampus of the 5XFAD mouse model of AD by recording 1,000s of neurons during a goal-directed spatial navigation task. We find that an hour of daily exposure to 40 Hz audio-visual stimulation over 8 d leads to higher coordination between hippocampal subregions CA3 and CA1 during navigation. Consistent with CA3’s role in generating sequential activity that represents future positions, 40 Hz flicker exposure increased prospective coding of future positions. In turn, prospective coding was more prominent during efficient navigation behavior. Our findings show how 40 Hz flicker enhances key hippocampal activity during behavior that is important for memory.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"40 Hz sensory stimulation enhances CA3–CA1 coordination and prospective coding during navigation in a mouse model of Alzheimer’s disease\",\"authors\":\"Abigail L. Paulson, Lu Zhang, Ashley M. Prichard, Annabelle C. Singer\",\"doi\":\"10.1073/pnas.2419364122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"40 Hz sensory stimulation (“flicker”) has emerged as a new technique to potentially mitigate pathology and improve cognition in mouse models of Alzheimer’s disease (AD) pathology. However, it remains unknown how 40 Hz flicker affects neural codes essential for memory. Accordingly, we investigate the effects of 40 Hz flicker on neural representations of experience in the hippocampus of the 5XFAD mouse model of AD by recording 1,000s of neurons during a goal-directed spatial navigation task. We find that an hour of daily exposure to 40 Hz audio-visual stimulation over 8 d leads to higher coordination between hippocampal subregions CA3 and CA1 during navigation. Consistent with CA3’s role in generating sequential activity that represents future positions, 40 Hz flicker exposure increased prospective coding of future positions. In turn, prospective coding was more prominent during efficient navigation behavior. Our findings show how 40 Hz flicker enhances key hippocampal activity during behavior that is important for memory.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2419364122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2419364122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

40hz感觉刺激(“闪烁”)已成为一种新技术,可以潜在地减轻阿尔茨海默病(AD)病理小鼠模型的病理和改善认知。然而,目前尚不清楚40赫兹的闪烁如何影响对记忆至关重要的神经编码。因此,我们通过记录目标导向空间导航任务中的1000个神经元,研究了40hz闪烁对5XFAD AD小鼠模型海马中经验神经表征的影响。我们发现,每天1小时的40赫兹视听刺激,持续8天,会导致海马CA3和CA1亚区在导航过程中具有更高的协调性。与CA3在产生代表未来位置的序列活动中的作用一致,40hz闪烁暴露增加了未来位置的预期编码。而前瞻性编码在高效导航行为中更为突出。我们的研究结果表明,在行为过程中,40赫兹的闪烁如何增强关键的海马体活动,这对记忆很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
40 Hz sensory stimulation enhances CA3–CA1 coordination and prospective coding during navigation in a mouse model of Alzheimer’s disease
40 Hz sensory stimulation (“flicker”) has emerged as a new technique to potentially mitigate pathology and improve cognition in mouse models of Alzheimer’s disease (AD) pathology. However, it remains unknown how 40 Hz flicker affects neural codes essential for memory. Accordingly, we investigate the effects of 40 Hz flicker on neural representations of experience in the hippocampus of the 5XFAD mouse model of AD by recording 1,000s of neurons during a goal-directed spatial navigation task. We find that an hour of daily exposure to 40 Hz audio-visual stimulation over 8 d leads to higher coordination between hippocampal subregions CA3 and CA1 during navigation. Consistent with CA3’s role in generating sequential activity that represents future positions, 40 Hz flicker exposure increased prospective coding of future positions. In turn, prospective coding was more prominent during efficient navigation behavior. Our findings show how 40 Hz flicker enhances key hippocampal activity during behavior that is important for memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信