群论中的光滑长方体

IF 0.9 1区 数学 Q2 MATHEMATICS
Joshua Maglione, Mima Stanojkovski
{"title":"群论中的光滑长方体","authors":"Joshua Maglione, Mima Stanojkovski","doi":"10.2140/ant.2025.19.967","DOIUrl":null,"url":null,"abstract":"<p>A smooth cuboid can be identified with a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn><mo>×</mo><mn>3</mn></math> matrix of linear forms in three variables, with coefficients in a field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math>, whose determinant describes a smooth cubic in the projective plane. To each such matrix one can associate a group scheme over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math>. We produce isomorphism invariants of these groups in terms of their <span>adjoint algebras</span>, which also give information on the number of their maximal abelian subgroups. Moreover, when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> is finite, we give a characterization of the isomorphism types of the groups in terms of isomorphisms of elliptic curves and also describe their automorphism groups. We conclude by applying our results to the determination of the automorphism groups and isomorphism testing of finite <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-groups of class <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math> and exponent <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> arising in this way. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"71 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth cuboids in group theory\",\"authors\":\"Joshua Maglione, Mima Stanojkovski\",\"doi\":\"10.2140/ant.2025.19.967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A smooth cuboid can be identified with a <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>3</mn><mo>×</mo><mn>3</mn></math> matrix of linear forms in three variables, with coefficients in a field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>K</mi></math>, whose determinant describes a smooth cubic in the projective plane. To each such matrix one can associate a group scheme over <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>K</mi></math>. We produce isomorphism invariants of these groups in terms of their <span>adjoint algebras</span>, which also give information on the number of their maximal abelian subgroups. Moreover, when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>K</mi></math> is finite, we give a characterization of the isomorphism types of the groups in terms of isomorphisms of elliptic curves and also describe their automorphism groups. We conclude by applying our results to the determination of the automorphism groups and isomorphism testing of finite <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-groups of class <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn></math> and exponent <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> arising in this way. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.967\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.967","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

光滑的长方体可以用三个变量的线性形式的3×3矩阵来标识,其系数在域K中,其行列式描述了射影平面上的光滑立方。对于每一个这样的矩阵,我们可以在k上关联一个群方案。我们根据这些群的伴随代数给出了它们的同构不变量,它也给出了它们的最大阿贝尔子群的数目的信息。此外,当K是有限时,我们用椭圆曲线的同构给出了群的同构类型的刻画,并描述了它们的自同构群。将所得结果应用于由此产生的2类有限p群的自同构群的确定和同构检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth cuboids in group theory

A smooth cuboid can be identified with a 3×3 matrix of linear forms in three variables, with coefficients in a field K, whose determinant describes a smooth cubic in the projective plane. To each such matrix one can associate a group scheme over K. We produce isomorphism invariants of these groups in terms of their adjoint algebras, which also give information on the number of their maximal abelian subgroups. Moreover, when K is finite, we give a characterization of the isomorphism types of the groups in terms of isomorphisms of elliptic curves and also describe their automorphism groups. We conclude by applying our results to the determination of the automorphism groups and isomorphism testing of finite p-groups of class 2 and exponent p arising in this way.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信