{"title":"环缘品种有理曲线和扭积的动力分布","authors":"Loïs Faisant","doi":"10.2140/ant.2025.19.883","DOIUrl":null,"url":null,"abstract":"<p>This work concerns asymptotical stabilisation phenomena occurring in the moduli space of sections of certain algebraic families over a smooth projective curve, whenever the generic fibre of the family is a smooth projective Fano variety, or not far from being Fano. </p><p> We describe the expected behaviour of the class, in a ring of motivic integration, of the moduli space of sections of given numerical class. Up to an adequate normalisation, it should converge, when the class of the sections goes arbitrarily far from the boundary of the dual of the effective cone, to an effective element given by a motivic Euler product. Such a principle can be seen as an analogue for rational curves of the Batyrev–Manin–Peyre principle for rational points. </p><p> The central tool of this article is the property of equidistribution of curves. We show that this notion does not depend on the choice of a model of the generic fibre, and that equidistribution of curves holds for smooth projective split toric varieties. As an application, we study the Batyrev–Manin–Peyre principle for curves on a certain kind of twisted products.</p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"33 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motivic distribution of rational curves and twisted products of toric varieties\",\"authors\":\"Loïs Faisant\",\"doi\":\"10.2140/ant.2025.19.883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work concerns asymptotical stabilisation phenomena occurring in the moduli space of sections of certain algebraic families over a smooth projective curve, whenever the generic fibre of the family is a smooth projective Fano variety, or not far from being Fano. </p><p> We describe the expected behaviour of the class, in a ring of motivic integration, of the moduli space of sections of given numerical class. Up to an adequate normalisation, it should converge, when the class of the sections goes arbitrarily far from the boundary of the dual of the effective cone, to an effective element given by a motivic Euler product. Such a principle can be seen as an analogue for rational curves of the Batyrev–Manin–Peyre principle for rational points. </p><p> The central tool of this article is the property of equidistribution of curves. We show that this notion does not depend on the choice of a model of the generic fibre, and that equidistribution of curves holds for smooth projective split toric varieties. As an application, we study the Batyrev–Manin–Peyre principle for curves on a certain kind of twisted products.</p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.883\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.883","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Motivic distribution of rational curves and twisted products of toric varieties
This work concerns asymptotical stabilisation phenomena occurring in the moduli space of sections of certain algebraic families over a smooth projective curve, whenever the generic fibre of the family is a smooth projective Fano variety, or not far from being Fano.
We describe the expected behaviour of the class, in a ring of motivic integration, of the moduli space of sections of given numerical class. Up to an adequate normalisation, it should converge, when the class of the sections goes arbitrarily far from the boundary of the dual of the effective cone, to an effective element given by a motivic Euler product. Such a principle can be seen as an analogue for rational curves of the Batyrev–Manin–Peyre principle for rational points.
The central tool of this article is the property of equidistribution of curves. We show that this notion does not depend on the choice of a model of the generic fibre, and that equidistribution of curves holds for smooth projective split toric varieties. As an application, we study the Batyrev–Manin–Peyre principle for curves on a certain kind of twisted products.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.