环缘品种有理曲线和扭积的动力分布

IF 0.9 1区 数学 Q2 MATHEMATICS
Loïs Faisant
{"title":"环缘品种有理曲线和扭积的动力分布","authors":"Loïs Faisant","doi":"10.2140/ant.2025.19.883","DOIUrl":null,"url":null,"abstract":"<p>This work concerns asymptotical stabilisation phenomena occurring in the moduli space of sections of certain algebraic families over a smooth projective curve, whenever the generic fibre of the family is a smooth projective Fano variety, or not far from being Fano. </p><p> We describe the expected behaviour of the class, in a ring of motivic integration, of the moduli space of sections of given numerical class. Up to an adequate normalisation, it should converge, when the class of the sections goes arbitrarily far from the boundary of the dual of the effective cone, to an effective element given by a motivic Euler product. Such a principle can be seen as an analogue for rational curves of the Batyrev–Manin–Peyre principle for rational points. </p><p> The central tool of this article is the property of equidistribution of curves. We show that this notion does not depend on the choice of a model of the generic fibre, and that equidistribution of curves holds for smooth projective split toric varieties. As an application, we study the Batyrev–Manin–Peyre principle for curves on a certain kind of twisted products.</p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"33 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motivic distribution of rational curves and twisted products of toric varieties\",\"authors\":\"Loïs Faisant\",\"doi\":\"10.2140/ant.2025.19.883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work concerns asymptotical stabilisation phenomena occurring in the moduli space of sections of certain algebraic families over a smooth projective curve, whenever the generic fibre of the family is a smooth projective Fano variety, or not far from being Fano. </p><p> We describe the expected behaviour of the class, in a ring of motivic integration, of the moduli space of sections of given numerical class. Up to an adequate normalisation, it should converge, when the class of the sections goes arbitrarily far from the boundary of the dual of the effective cone, to an effective element given by a motivic Euler product. Such a principle can be seen as an analogue for rational curves of the Batyrev–Manin–Peyre principle for rational points. </p><p> The central tool of this article is the property of equidistribution of curves. We show that this notion does not depend on the choice of a model of the generic fibre, and that equidistribution of curves holds for smooth projective split toric varieties. As an application, we study the Batyrev–Manin–Peyre principle for curves on a certain kind of twisted products.</p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.883\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.883","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究光滑投影曲线上某些代数族的截面模空间中的渐近稳定现象,无论该族的一般纤维是光滑投影的范诺变种,或离范诺不远。我们描述了给定数值类的部分的模空间在动力积分环中的期望行为。在适当的归一化范围内,当截面的类别离有效锥的对偶边界任意远时,它应该收敛到由动力欧拉积给出的有效元素。这个原理可以看作是有理曲线上有理点的Batyrev-Manin-Peyre原理的类比。本文的中心工具是曲线的均匀分布性质。我们证明了这一概念不依赖于一般纤维模型的选择,并且曲线的均匀分布适用于光滑射影分裂环面品种。作为应用,我们研究了一类扭曲积上曲线的Batyrev-Manin-Peyre原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motivic distribution of rational curves and twisted products of toric varieties

This work concerns asymptotical stabilisation phenomena occurring in the moduli space of sections of certain algebraic families over a smooth projective curve, whenever the generic fibre of the family is a smooth projective Fano variety, or not far from being Fano.

We describe the expected behaviour of the class, in a ring of motivic integration, of the moduli space of sections of given numerical class. Up to an adequate normalisation, it should converge, when the class of the sections goes arbitrarily far from the boundary of the dual of the effective cone, to an effective element given by a motivic Euler product. Such a principle can be seen as an analogue for rational curves of the Batyrev–Manin–Peyre principle for rational points.

The central tool of this article is the property of equidistribution of curves. We show that this notion does not depend on the choice of a model of the generic fibre, and that equidistribution of curves holds for smooth projective split toric varieties. As an application, we study the Batyrev–Manin–Peyre principle for curves on a certain kind of twisted products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信