具有受限分支的极大扩展伽罗瓦群的表示

IF 0.9 1区 数学 Q2 MATHEMATICS
Yuan Liu
{"title":"具有受限分支的极大扩展伽罗瓦群的表示","authors":"Yuan Liu","doi":"10.2140/ant.2025.19.835","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the work of Lubotzky, we use Galois cohomology to study the difference between the number of generators and the minimal number of relations in a presentation of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math>, the Galois group of the maximal extension of a global field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> that is unramified outside a finite set <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi></math> of places, as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> varies among a certain family of extensions of a fixed global field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math>. We define a group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>B</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo>,</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math>, for each finite simple <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math>-module <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math>, to generalize the work of Koch and Shafarevich on the pro-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math> completion of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math>. We prove that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math> always admits a balanced presentation when it is finitely generated. In the setting of the nonabelian Cohen–Lenstra heuristics, we prove that the unramified Galois groups studied by the Liu–Wood–Zureick-Brown conjecture always admit a balanced presentation in the form of the random group in the conjecture. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Presentations of Galois groups of maximal extensions with restricted ramification\",\"authors\":\"Yuan Liu\",\"doi\":\"10.2140/ant.2025.19.835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by the work of Lubotzky, we use Galois cohomology to study the difference between the number of generators and the minimal number of relations in a presentation of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo stretchy=\\\"false\\\">)</mo></math>, the Galois group of the maximal extension of a global field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math> that is unramified outside a finite set <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>S</mi></math> of places, as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math> varies among a certain family of extensions of a fixed global field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Q</mi></math>. We define a group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>B</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo>,</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math>, for each finite simple <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo stretchy=\\\"false\\\">)</mo></math>-module <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi></math>, to generalize the work of Koch and Shafarevich on the pro-<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math> completion of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo stretchy=\\\"false\\\">)</mo></math>. We prove that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo stretchy=\\\"false\\\">)</mo></math> always admits a balanced presentation when it is finitely generated. In the setting of the nonabelian Cohen–Lenstra heuristics, we prove that the unramified Galois groups studied by the Liu–Wood–Zureick-Brown conjecture always admit a balanced presentation in the form of the random group in the conjecture. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.835\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.835","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Lubotzky的工作的激励下,我们利用伽罗瓦上同调研究了GS(k)的表示中产生子数与最小关系数的区别,即在有限的位置集S外无分支的全局域k的最大扩展的伽罗瓦群,当k在固定全局域q的某一族扩展中变化时,我们定义了一个群BS(k, a),对于每一个有限简单GS(k)-模a,推广了Koch和Shafarevich关于GS(k)的pro- r完备性的工作。我们证明了GS(k)在有限生成时总是允许一个平衡表示。在non - abelian Cohen-Lenstra启发式的背景下,我们证明了由Liu-Wood-Zureick-Brown猜想所研究的非分支伽罗瓦群在该猜想中总是以随机群的形式承认一种平衡表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Presentations of Galois groups of maximal extensions with restricted ramification

Motivated by the work of Lubotzky, we use Galois cohomology to study the difference between the number of generators and the minimal number of relations in a presentation of GS(k), the Galois group of the maximal extension of a global field k that is unramified outside a finite set S of places, as k varies among a certain family of extensions of a fixed global field Q. We define a group BS(k,A), for each finite simple GS(k)-module A, to generalize the work of Koch and Shafarevich on the pro- completion of GS(k). We prove that GS(k) always admits a balanced presentation when it is finitely generated. In the setting of the nonabelian Cohen–Lenstra heuristics, we prove that the unramified Galois groups studied by the Liu–Wood–Zureick-Brown conjecture always admit a balanced presentation in the form of the random group in the conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信