{"title":"具有受限分支的极大扩展伽罗瓦群的表示","authors":"Yuan Liu","doi":"10.2140/ant.2025.19.835","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the work of Lubotzky, we use Galois cohomology to study the difference between the number of generators and the minimal number of relations in a presentation of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math>, the Galois group of the maximal extension of a global field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> that is unramified outside a finite set <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi></math> of places, as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> varies among a certain family of extensions of a fixed global field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math>. We define a group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>B</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo>,</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math>, for each finite simple <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math>-module <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math>, to generalize the work of Koch and Shafarevich on the pro-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math> completion of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math>. We prove that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>k</mi><mo stretchy=\"false\">)</mo></math> always admits a balanced presentation when it is finitely generated. In the setting of the nonabelian Cohen–Lenstra heuristics, we prove that the unramified Galois groups studied by the Liu–Wood–Zureick-Brown conjecture always admit a balanced presentation in the form of the random group in the conjecture. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Presentations of Galois groups of maximal extensions with restricted ramification\",\"authors\":\"Yuan Liu\",\"doi\":\"10.2140/ant.2025.19.835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by the work of Lubotzky, we use Galois cohomology to study the difference between the number of generators and the minimal number of relations in a presentation of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo stretchy=\\\"false\\\">)</mo></math>, the Galois group of the maximal extension of a global field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math> that is unramified outside a finite set <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>S</mi></math> of places, as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math> varies among a certain family of extensions of a fixed global field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Q</mi></math>. We define a group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>B</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo>,</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math>, for each finite simple <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo stretchy=\\\"false\\\">)</mo></math>-module <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi></math>, to generalize the work of Koch and Shafarevich on the pro-<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math> completion of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo stretchy=\\\"false\\\">)</mo></math>. We prove that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo stretchy=\\\"false\\\">)</mo></math> always admits a balanced presentation when it is finitely generated. In the setting of the nonabelian Cohen–Lenstra heuristics, we prove that the unramified Galois groups studied by the Liu–Wood–Zureick-Brown conjecture always admit a balanced presentation in the form of the random group in the conjecture. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.835\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.835","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Presentations of Galois groups of maximal extensions with restricted ramification
Motivated by the work of Lubotzky, we use Galois cohomology to study the difference between the number of generators and the minimal number of relations in a presentation of , the Galois group of the maximal extension of a global field that is unramified outside a finite set of places, as varies among a certain family of extensions of a fixed global field . We define a group , for each finite simple -module , to generalize the work of Koch and Shafarevich on the pro- completion of . We prove that always admits a balanced presentation when it is finitely generated. In the setting of the nonabelian Cohen–Lenstra heuristics, we prove that the unramified Galois groups studied by the Liu–Wood–Zureick-Brown conjecture always admit a balanced presentation in the form of the random group in the conjecture.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.