偏振态共振工程的单斜非线性超表面

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ivan Toftul, Dhruv Hariharan, Pavel Tonkaev, Fangxing Lai, Qinghai Song, Yuri Kivshar
{"title":"偏振态共振工程的单斜非线性超表面","authors":"Ivan Toftul, Dhruv Hariharan, Pavel Tonkaev, Fangxing Lai, Qinghai Song, Yuri Kivshar","doi":"10.1515/nanoph-2025-0019","DOIUrl":null,"url":null,"abstract":"Polarization is a fundamental property of light that can be engineered and controlled efficiently with optical metasurfaces. Here, we employ <jats:italic>chiral metasurfaces</jats:italic> with monoclinic lattice geometry and achiral meta-atoms for resonant engineering of polarization states of light. We demonstrate, both theoretically and experimentally, that a monoclinic metasurface can convert linearly polarized light into elliptically polarized light not only in the linear regime but also in the nonlinear regime with the resonant generation of the third-harmonic field. We reveal that the ellipticity of the fundamental and higher-harmonic fields depends critically on the angle of the input linear polarization, and the effective chiral response of a monoclinic lattice plays a significant role in the polarization conversion.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"31 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monoclinic nonlinear metasurfaces for resonant engineering of polarization states\",\"authors\":\"Ivan Toftul, Dhruv Hariharan, Pavel Tonkaev, Fangxing Lai, Qinghai Song, Yuri Kivshar\",\"doi\":\"10.1515/nanoph-2025-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polarization is a fundamental property of light that can be engineered and controlled efficiently with optical metasurfaces. Here, we employ <jats:italic>chiral metasurfaces</jats:italic> with monoclinic lattice geometry and achiral meta-atoms for resonant engineering of polarization states of light. We demonstrate, both theoretically and experimentally, that a monoclinic metasurface can convert linearly polarized light into elliptically polarized light not only in the linear regime but also in the nonlinear regime with the resonant generation of the third-harmonic field. We reveal that the ellipticity of the fundamental and higher-harmonic fields depends critically on the angle of the input linear polarization, and the effective chiral response of a monoclinic lattice plays a significant role in the polarization conversion.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2025-0019\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0019","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

偏振是光的基本特性,可以通过光学超表面进行有效的设计和控制。在这里,我们采用单斜晶格几何的手性超表面和非手性元原子进行光偏振态的共振工程。我们从理论和实验两方面证明了单斜超表面不仅可以在线性区,而且可以在非线性区将线偏振光转换为椭圆偏振光,并产生谐振三次谐波场。我们发现基场和高谐波场的椭圆率与输入线偏振的角度密切相关,单斜晶格的有效手性响应在偏振转换中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monoclinic nonlinear metasurfaces for resonant engineering of polarization states
Polarization is a fundamental property of light that can be engineered and controlled efficiently with optical metasurfaces. Here, we employ chiral metasurfaces with monoclinic lattice geometry and achiral meta-atoms for resonant engineering of polarization states of light. We demonstrate, both theoretically and experimentally, that a monoclinic metasurface can convert linearly polarized light into elliptically polarized light not only in the linear regime but also in the nonlinear regime with the resonant generation of the third-harmonic field. We reveal that the ellipticity of the fundamental and higher-harmonic fields depends critically on the angle of the input linear polarization, and the effective chiral response of a monoclinic lattice plays a significant role in the polarization conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信