{"title":"温敏光力学系统中量子压缩引起的光非互易","authors":"Jun-Cong Zheng, Xiao-Wei Zheng, Xin-Lei Hei, Yi-Fan Qiao, Xiao-Yu Yao, Xue-Feng Pan, Yu-Meng Ren, Xiao-Wen Huo, Peng-Bo Li","doi":"10.1088/2058-9565/adcbcf","DOIUrl":null,"url":null,"abstract":"We investigate single-photon transmission and the statistical properties of photon correlations in <inline-formula>\n<tex-math><?CDATA $\\chi^{(2)}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>χ</mml:mi><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"qstadcbcfieqn1.gif\"></inline-graphic></inline-formula> microring optomechanical systems, where optical nonreciprocity is induced by directional quantum squeezing. Due to the presence of thermal phonons in the mechanical resonator, the system is highly sensitive to temperature changes. Our numerical simulations show that as the thermal phonons vary from 0 to 10, the isolation ratio of single-photon transmission decreases from 22.2 dB to 1.1 dB (or from −23 dB to −3.3 dB). Additionally, the statistical properties of photon correlations transition from exhibiting a strong bunching effect to a weak bunching effect. Moreover, the parametric amplification component enhances the device’s temperature response, distinguishing it from other similar nonreciprocal devices. Our protocol suggests a potential application for nonreciprocal setups in precise temperature measurement at ultralow temperatures, thereby enriching quantum networks and quantum information processing.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"7 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical nonreciprocity induced by quantum squeezing in temperature sensitive optomechanical systems\",\"authors\":\"Jun-Cong Zheng, Xiao-Wei Zheng, Xin-Lei Hei, Yi-Fan Qiao, Xiao-Yu Yao, Xue-Feng Pan, Yu-Meng Ren, Xiao-Wen Huo, Peng-Bo Li\",\"doi\":\"10.1088/2058-9565/adcbcf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate single-photon transmission and the statistical properties of photon correlations in <inline-formula>\\n<tex-math><?CDATA $\\\\chi^{(2)}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mi>χ</mml:mi><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"qstadcbcfieqn1.gif\\\"></inline-graphic></inline-formula> microring optomechanical systems, where optical nonreciprocity is induced by directional quantum squeezing. Due to the presence of thermal phonons in the mechanical resonator, the system is highly sensitive to temperature changes. Our numerical simulations show that as the thermal phonons vary from 0 to 10, the isolation ratio of single-photon transmission decreases from 22.2 dB to 1.1 dB (or from −23 dB to −3.3 dB). Additionally, the statistical properties of photon correlations transition from exhibiting a strong bunching effect to a weak bunching effect. Moreover, the parametric amplification component enhances the device’s temperature response, distinguishing it from other similar nonreciprocal devices. Our protocol suggests a potential application for nonreciprocal setups in precise temperature measurement at ultralow temperatures, thereby enriching quantum networks and quantum information processing.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adcbcf\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adcbcf","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical nonreciprocity induced by quantum squeezing in temperature sensitive optomechanical systems
We investigate single-photon transmission and the statistical properties of photon correlations in χ(2) microring optomechanical systems, where optical nonreciprocity is induced by directional quantum squeezing. Due to the presence of thermal phonons in the mechanical resonator, the system is highly sensitive to temperature changes. Our numerical simulations show that as the thermal phonons vary from 0 to 10, the isolation ratio of single-photon transmission decreases from 22.2 dB to 1.1 dB (or from −23 dB to −3.3 dB). Additionally, the statistical properties of photon correlations transition from exhibiting a strong bunching effect to a weak bunching effect. Moreover, the parametric amplification component enhances the device’s temperature response, distinguishing it from other similar nonreciprocal devices. Our protocol suggests a potential application for nonreciprocal setups in precise temperature measurement at ultralow temperatures, thereby enriching quantum networks and quantum information processing.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.