Pritam Chattopadhyay, Avijit Misra, Saikat Sur, David Petrosyan, Gershon Kurizki
{"title":"利用光子诱导激发共振传感腔内多原子网络","authors":"Pritam Chattopadhyay, Avijit Misra, Saikat Sur, David Petrosyan, Gershon Kurizki","doi":"10.1088/2058-9565/adcae3","DOIUrl":null,"url":null,"abstract":"We explore the distribution in space and time of a single-photon excitation shared by a network of dipole–dipole interacting atoms that are also coupled to a common photonic field mode. Time-averaged distributions reveal partial trapping of the excitation near the initially excited atom. This trapping is associated with resonances of the excitation at crossing points of the photon-dressed energy eigenvalues of the network. The predicted <italic toggle=\"yes\">photon-induced many-atom trapped excitation</italic> (PIMATE) is sensitive to atomic position disorder which broadens the excitation resonances and transforms them to avoided crossings. PIMATE is shown to allow highly effective and accurate sensing of <italic toggle=\"yes\">multi-atom</italic> networks and their disorder.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"37 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensing multiatom networks in cavities via photon-induced excitation resonance\",\"authors\":\"Pritam Chattopadhyay, Avijit Misra, Saikat Sur, David Petrosyan, Gershon Kurizki\",\"doi\":\"10.1088/2058-9565/adcae3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the distribution in space and time of a single-photon excitation shared by a network of dipole–dipole interacting atoms that are also coupled to a common photonic field mode. Time-averaged distributions reveal partial trapping of the excitation near the initially excited atom. This trapping is associated with resonances of the excitation at crossing points of the photon-dressed energy eigenvalues of the network. The predicted <italic toggle=\\\"yes\\\">photon-induced many-atom trapped excitation</italic> (PIMATE) is sensitive to atomic position disorder which broadens the excitation resonances and transforms them to avoided crossings. PIMATE is shown to allow highly effective and accurate sensing of <italic toggle=\\\"yes\\\">multi-atom</italic> networks and their disorder.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adcae3\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adcae3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Sensing multiatom networks in cavities via photon-induced excitation resonance
We explore the distribution in space and time of a single-photon excitation shared by a network of dipole–dipole interacting atoms that are also coupled to a common photonic field mode. Time-averaged distributions reveal partial trapping of the excitation near the initially excited atom. This trapping is associated with resonances of the excitation at crossing points of the photon-dressed energy eigenvalues of the network. The predicted photon-induced many-atom trapped excitation (PIMATE) is sensitive to atomic position disorder which broadens the excitation resonances and transforms them to avoided crossings. PIMATE is shown to allow highly effective and accurate sensing of multi-atom networks and their disorder.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.