{"title":"二维Rashba半导体和倒置不对称拓扑绝缘体在单层Janus MAA' zxz '(4−x)族","authors":"Jinghui Wei, Qikun Tian, XinTing Xu, Guangzhao Qin, Xu Zuo, Zhenzhen Qin","doi":"10.1063/5.0258804","DOIUrl":null,"url":null,"abstract":"The Rashba effect in Janus structures, accompanied by nontrivial topology, plays an important role in spintronics and even photovoltaic applications. Herein, through first-principles calculations, we systematically investigate the geometric stability and electronic structures of 135 kinds of Janus MAA'ZxZ'(4−x) family derived from two-dimensional MA2Z4 (M = Mg, Ga, Sr; A = Al, Ga; Z = S, Se, Te) monolayers and design numerous Rashba semiconductors and inversion-asymmetric topological insulators. Specifically, there are a total of 26 Rashba semiconductors with isolated spin-splitting bands contributed by Se/Te-pz orbitals at conduction band minimum, and the magnitude of the Rashba constant correlates strongly with both the intrinsic electric field and the strength of spin–orbit coupling (SOC). As the atomic number increases, the bandgap of Janus MAA'ZxZ'(4−x) continually decreases until it shrinks to a point where, when SOC is considered, band inversion occurs, leading to a reopening of the bandgap with nontrivial topological phases. In conjunction with band inversion, pz orbitals near the Fermi level can introduce double Rashba splitting featuring a distinctive hybrid spin texture, which can be further effectively adjusted through small biaxial strains and show a continuous evolution from topological to non-topological accompanied by different spin textures. This work provides significant insights into Rashba and topology physics and further presents indispensable inversion-asymmetry materials for the development of nonlinear optoelectronics.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional Rashba semiconductors and inversion-asymmetric topological insulators in monolayer Janus MAA'ZxZ'(4−x) family\",\"authors\":\"Jinghui Wei, Qikun Tian, XinTing Xu, Guangzhao Qin, Xu Zuo, Zhenzhen Qin\",\"doi\":\"10.1063/5.0258804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Rashba effect in Janus structures, accompanied by nontrivial topology, plays an important role in spintronics and even photovoltaic applications. Herein, through first-principles calculations, we systematically investigate the geometric stability and electronic structures of 135 kinds of Janus MAA'ZxZ'(4−x) family derived from two-dimensional MA2Z4 (M = Mg, Ga, Sr; A = Al, Ga; Z = S, Se, Te) monolayers and design numerous Rashba semiconductors and inversion-asymmetric topological insulators. Specifically, there are a total of 26 Rashba semiconductors with isolated spin-splitting bands contributed by Se/Te-pz orbitals at conduction band minimum, and the magnitude of the Rashba constant correlates strongly with both the intrinsic electric field and the strength of spin–orbit coupling (SOC). As the atomic number increases, the bandgap of Janus MAA'ZxZ'(4−x) continually decreases until it shrinks to a point where, when SOC is considered, band inversion occurs, leading to a reopening of the bandgap with nontrivial topological phases. In conjunction with band inversion, pz orbitals near the Fermi level can introduce double Rashba splitting featuring a distinctive hybrid spin texture, which can be further effectively adjusted through small biaxial strains and show a continuous evolution from topological to non-topological accompanied by different spin textures. This work provides significant insights into Rashba and topology physics and further presents indispensable inversion-asymmetry materials for the development of nonlinear optoelectronics.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0258804\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0258804","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Two-dimensional Rashba semiconductors and inversion-asymmetric topological insulators in monolayer Janus MAA'ZxZ'(4−x) family
The Rashba effect in Janus structures, accompanied by nontrivial topology, plays an important role in spintronics and even photovoltaic applications. Herein, through first-principles calculations, we systematically investigate the geometric stability and electronic structures of 135 kinds of Janus MAA'ZxZ'(4−x) family derived from two-dimensional MA2Z4 (M = Mg, Ga, Sr; A = Al, Ga; Z = S, Se, Te) monolayers and design numerous Rashba semiconductors and inversion-asymmetric topological insulators. Specifically, there are a total of 26 Rashba semiconductors with isolated spin-splitting bands contributed by Se/Te-pz orbitals at conduction band minimum, and the magnitude of the Rashba constant correlates strongly with both the intrinsic electric field and the strength of spin–orbit coupling (SOC). As the atomic number increases, the bandgap of Janus MAA'ZxZ'(4−x) continually decreases until it shrinks to a point where, when SOC is considered, band inversion occurs, leading to a reopening of the bandgap with nontrivial topological phases. In conjunction with band inversion, pz orbitals near the Fermi level can introduce double Rashba splitting featuring a distinctive hybrid spin texture, which can be further effectively adjusted through small biaxial strains and show a continuous evolution from topological to non-topological accompanied by different spin textures. This work provides significant insights into Rashba and topology physics and further presents indispensable inversion-asymmetry materials for the development of nonlinear optoelectronics.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.