TBD 接枝活性炭作为连续 Knoevenagel 反应的高效固体基催化剂

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Yi Chen , Xueqing Ma , Chenghao Zhang , Bingqi Xie , Wangyang Ma , Jisong Zhang
{"title":"TBD 接枝活性炭作为连续 Knoevenagel 反应的高效固体基催化剂","authors":"Yi Chen ,&nbsp;Xueqing Ma ,&nbsp;Chenghao Zhang ,&nbsp;Bingqi Xie ,&nbsp;Wangyang Ma ,&nbsp;Jisong Zhang","doi":"10.1016/j.jcat.2025.116156","DOIUrl":null,"url":null,"abstract":"<div><div>The development of a highly efficient and stable metal-free solid base catalyst for the Knoevenagel reaction remains a significant challenge. In this study, activated carbon is selected as support material to develop a new base catalyst due to its excellent chemical stability. A novel surface chloromethylation method is applied to modify the activated carbon surface, followed by covalent grafting of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), resulting in a highly effective solid organic base catalyst. A continuous platform based on a micro-packed bed reactor has been optimized for the Knoevenagel reaction. The system achieves excellent space-time yields (19129.4 <span><math><mrow><msub><mi>g</mi><mrow><mi>P</mi><mi>r</mi><mi>o</mi><mspace></mspace></mrow></msub><msubsup><mrow><mi>k</mi><mi>g</mi></mrow><mrow><mi>c</mi><mi>a</mi><mi>t</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msubsup><mspace></mspace><msup><mrow><mi>h</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math></span>) and demonstrates a broad substrate scope. The solid organic base catalyst exhibits a turnover frequency (<em>TOF</em>) exceeding 140 <span><math><mrow><msup><mrow><mi>h</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math></span>, surpassing the performance of similar nitrogen-based catalysts reported in literature (7.6–68.0 <span><math><mrow><msup><mrow><mi>h</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math></span>). Moreover, the catalyst shows no signs of deactivation after more than 23 h of continuous operation with a turnover number (<em>TON</em>) exceeding 115, indicating comparable performance reported in literature (29.7–297.2). Catalyst deactivation is primarily attributed to the adsorption of raw materials and products onto the base sites, leading to a gradual loss of catalytic activity.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"448 ","pages":"Article 116156"},"PeriodicalIF":6.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TBD-grafted activated carbon as an efficient solid base catalyst for continuous Knoevenagel reaction\",\"authors\":\"Yi Chen ,&nbsp;Xueqing Ma ,&nbsp;Chenghao Zhang ,&nbsp;Bingqi Xie ,&nbsp;Wangyang Ma ,&nbsp;Jisong Zhang\",\"doi\":\"10.1016/j.jcat.2025.116156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of a highly efficient and stable metal-free solid base catalyst for the Knoevenagel reaction remains a significant challenge. In this study, activated carbon is selected as support material to develop a new base catalyst due to its excellent chemical stability. A novel surface chloromethylation method is applied to modify the activated carbon surface, followed by covalent grafting of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), resulting in a highly effective solid organic base catalyst. A continuous platform based on a micro-packed bed reactor has been optimized for the Knoevenagel reaction. The system achieves excellent space-time yields (19129.4 <span><math><mrow><msub><mi>g</mi><mrow><mi>P</mi><mi>r</mi><mi>o</mi><mspace></mspace></mrow></msub><msubsup><mrow><mi>k</mi><mi>g</mi></mrow><mrow><mi>c</mi><mi>a</mi><mi>t</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msubsup><mspace></mspace><msup><mrow><mi>h</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math></span>) and demonstrates a broad substrate scope. The solid organic base catalyst exhibits a turnover frequency (<em>TOF</em>) exceeding 140 <span><math><mrow><msup><mrow><mi>h</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math></span>, surpassing the performance of similar nitrogen-based catalysts reported in literature (7.6–68.0 <span><math><mrow><msup><mrow><mi>h</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math></span>). Moreover, the catalyst shows no signs of deactivation after more than 23 h of continuous operation with a turnover number (<em>TON</em>) exceeding 115, indicating comparable performance reported in literature (29.7–297.2). Catalyst deactivation is primarily attributed to the adsorption of raw materials and products onto the base sites, leading to a gradual loss of catalytic activity.</div></div>\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":\"448 \",\"pages\":\"Article 116156\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021951725002210\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951725002210","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为克诺文纳格尔反应开发高效稳定的无金属固体基础催化剂仍然是一项重大挑战。在本研究中,活性炭因其优异的化学稳定性而被选为开发新基催化剂的支撑材料。研究采用一种新型表面氯甲基化方法对活性炭表面进行改性,然后共价接枝 1,5,7-三氮杂双环[4.4.0]癸-5-烯 (TBD),最终得到一种高效的固体有机基催化剂。针对克诺文纳格尔反应,我们优化了一个基于微型堆积床反应器的连续平台。该系统实现了出色的时空产率(19129.4 gProkgcat-1h-1gProkgcat-1h-1),并展示了广泛的底物范围。固体有机基催化剂的周转频率(TOF)超过 140 h-1h-1,超过了文献报道的类似氮基催化剂的性能(7.6-68.0 h-1h-1)。此外,该催化剂在连续运行超过 23 小时后没有出现失活迹象,其周转次数(TON)超过 115,表明其性能与文献报道(29.7-297.2)相当。催化剂失活的主要原因是原料和产品吸附在基底位点上,导致催化活性逐渐丧失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TBD-grafted activated carbon as an efficient solid base catalyst for continuous Knoevenagel reaction

TBD-grafted activated carbon as an efficient solid base catalyst for continuous Knoevenagel reaction

TBD-grafted activated carbon as an efficient solid base catalyst for continuous Knoevenagel reaction
The development of a highly efficient and stable metal-free solid base catalyst for the Knoevenagel reaction remains a significant challenge. In this study, activated carbon is selected as support material to develop a new base catalyst due to its excellent chemical stability. A novel surface chloromethylation method is applied to modify the activated carbon surface, followed by covalent grafting of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), resulting in a highly effective solid organic base catalyst. A continuous platform based on a micro-packed bed reactor has been optimized for the Knoevenagel reaction. The system achieves excellent space-time yields (19129.4 gProkgcat-1h-1) and demonstrates a broad substrate scope. The solid organic base catalyst exhibits a turnover frequency (TOF) exceeding 140 h-1, surpassing the performance of similar nitrogen-based catalysts reported in literature (7.6–68.0 h-1). Moreover, the catalyst shows no signs of deactivation after more than 23 h of continuous operation with a turnover number (TON) exceeding 115, indicating comparable performance reported in literature (29.7–297.2). Catalyst deactivation is primarily attributed to the adsorption of raw materials and products onto the base sites, leading to a gradual loss of catalytic activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信