扭曲过渡金属二硫族化合物中moir驱动的界面热输运

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-23 DOI:10.1021/acsnano.4c12148
Wenwu Jiang, Ting Liang, Hekai Bu, Jianbin Xu, Wengen Ouyang
{"title":"扭曲过渡金属二硫族化合物中moir<s:1>驱动的界面热输运","authors":"Wenwu Jiang, Ting Liang, Hekai Bu, Jianbin Xu, Wengen Ouyang","doi":"10.1021/acsnano.4c12148","DOIUrl":null,"url":null,"abstract":"Cross-plane thermal conductivity in homogeneous transition metal dichalcogenides (TMDs) exhibits a pronounced dependence on interfacial twist angle, originating from atomic reconstruction within moiré superlattices. This reconstruction redistributes interlayer stacking modes, reducing high-efficiency thermal transport regions and softening the transverse acoustic phonon modes as the twist angle increases. We propose a general theoretical framework to capture this behavior, validated against nonequilibrium molecular dynamics simulations across both homo- and heterogeneous twisted TMD structures, as well as homogeneous twisted graphene and hexagonal boron nitride stacks. Our model reveals that the interfacial thermal conductance (ITC) scales with the twist angle (θ) as <i></i><math display=\"inline\"><mi>ln</mi><mrow><mo stretchy=\"false\">(</mo><mi>ITC</mi><mo stretchy=\"false\">)</mo></mrow><mo>∝</mo><msup><mrow><mi mathvariant=\"normal\">e</mi></mrow><mrow><mrow><mo>−</mo></mrow><mrow><msqrt><mi>θ</mi></msqrt></mrow></mrow></msup></math>. These findings advance the understanding of twist-engineered interfacial thermal transport, offering design principles for optimizing thermal management in devices based on van der Waals layered materials.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"24 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moiré-Driven Interfacial Thermal Transport in Twisted Transition Metal Dichalcogenides\",\"authors\":\"Wenwu Jiang, Ting Liang, Hekai Bu, Jianbin Xu, Wengen Ouyang\",\"doi\":\"10.1021/acsnano.4c12148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-plane thermal conductivity in homogeneous transition metal dichalcogenides (TMDs) exhibits a pronounced dependence on interfacial twist angle, originating from atomic reconstruction within moiré superlattices. This reconstruction redistributes interlayer stacking modes, reducing high-efficiency thermal transport regions and softening the transverse acoustic phonon modes as the twist angle increases. We propose a general theoretical framework to capture this behavior, validated against nonequilibrium molecular dynamics simulations across both homo- and heterogeneous twisted TMD structures, as well as homogeneous twisted graphene and hexagonal boron nitride stacks. Our model reveals that the interfacial thermal conductance (ITC) scales with the twist angle (θ) as <i></i><math display=\\\"inline\\\"><mi>ln</mi><mrow><mo stretchy=\\\"false\\\">(</mo><mi>ITC</mi><mo stretchy=\\\"false\\\">)</mo></mrow><mo>∝</mo><msup><mrow><mi mathvariant=\\\"normal\\\">e</mi></mrow><mrow><mrow><mo>−</mo></mrow><mrow><msqrt><mi>θ</mi></msqrt></mrow></mrow></msup></math>. These findings advance the understanding of twist-engineered interfacial thermal transport, offering design principles for optimizing thermal management in devices based on van der Waals layered materials.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c12148\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12148","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

均匀过渡金属二硫族化合物(TMDs)的跨平面导热性表现出明显的依赖于界面扭转角,起源于摩尔超晶格内的原子重建。这种重构重新分配了层间堆叠模式,减少了高效热输运区,并随着扭转角的增加软化了横向声子模式。我们提出了一个通用的理论框架来捕捉这种行为,并通过非平衡分子动力学模拟验证了homo-和异相扭曲TMD结构,以及均匀扭曲石墨烯和六方氮化硼堆叠。我们的模型表明,界面热导率(ITC)随扭转角(θ) ln(ITC)∝e−θ而变化。这些发现促进了对扭曲工程界面热传输的理解,为优化基于范德华层状材料的器件的热管理提供了设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Moiré-Driven Interfacial Thermal Transport in Twisted Transition Metal Dichalcogenides

Moiré-Driven Interfacial Thermal Transport in Twisted Transition Metal Dichalcogenides
Cross-plane thermal conductivity in homogeneous transition metal dichalcogenides (TMDs) exhibits a pronounced dependence on interfacial twist angle, originating from atomic reconstruction within moiré superlattices. This reconstruction redistributes interlayer stacking modes, reducing high-efficiency thermal transport regions and softening the transverse acoustic phonon modes as the twist angle increases. We propose a general theoretical framework to capture this behavior, validated against nonequilibrium molecular dynamics simulations across both homo- and heterogeneous twisted TMD structures, as well as homogeneous twisted graphene and hexagonal boron nitride stacks. Our model reveals that the interfacial thermal conductance (ITC) scales with the twist angle (θ) as ln(ITC)eθ. These findings advance the understanding of twist-engineered interfacial thermal transport, offering design principles for optimizing thermal management in devices based on van der Waals layered materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信