Long Wang, Tao Li, Junying Wu, Gang Song, Guiting Chen, Zhicai He, Yong Cao
{"title":"纤维素阴极间层聚合优化实现高性能有机太阳能电池","authors":"Long Wang, Tao Li, Junying Wu, Gang Song, Guiting Chen, Zhicai He, Yong Cao","doi":"10.1021/acsami.5c02839","DOIUrl":null,"url":null,"abstract":"Regulating aggregation and molecular packing of small-molecule cathode interlayer (CIL) materials is a significant but imperceptible issue in the development of high-performance organic solar cells (OSCs). For the celebrity PDINN small molecule, the strong aggregation tendency of the perylene diimide molecular backbone leads to excessive crystallinity when films form, ultimately affecting the morphology and charge transport ability of the films. Herein, we address this issue by developing a hydroxyl-induced anti-aggregation strategy by introducing a suitable amount of hydroxypropyl cellulose (HPC) into the solution of PDINN, and a careful balance is achieved between the film-forming quality and the aggregation of the material. Taking two commercially available active layer systems, PM6/Y6 and D18/L8-BO, as examples, the introduction of HPC significantly increases the <i>J</i><sub>SC</sub> and FF values of the devices. Therefore, power conversion efficiency risen from 17.38% to 18.25% for the PM6/Y6 system and from 18.45% to 19.73% for the D18/L8-BO system, and it was proved that the thickness tolerance of the HPC hybrid interface was improved significantly. This hydroxyl-induced anti-aggregation strategy has demonstrated efficiency in other active layer systems. This work provides a simple and effective method to solve the aggregation problem of small molecule CIL materials, which is conducive to the commercial development of OSCs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"108 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregation Optimization of Cathode Interlayer via Incorporating Cellulose Enables High-Performance Organic Solar Cells\",\"authors\":\"Long Wang, Tao Li, Junying Wu, Gang Song, Guiting Chen, Zhicai He, Yong Cao\",\"doi\":\"10.1021/acsami.5c02839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulating aggregation and molecular packing of small-molecule cathode interlayer (CIL) materials is a significant but imperceptible issue in the development of high-performance organic solar cells (OSCs). For the celebrity PDINN small molecule, the strong aggregation tendency of the perylene diimide molecular backbone leads to excessive crystallinity when films form, ultimately affecting the morphology and charge transport ability of the films. Herein, we address this issue by developing a hydroxyl-induced anti-aggregation strategy by introducing a suitable amount of hydroxypropyl cellulose (HPC) into the solution of PDINN, and a careful balance is achieved between the film-forming quality and the aggregation of the material. Taking two commercially available active layer systems, PM6/Y6 and D18/L8-BO, as examples, the introduction of HPC significantly increases the <i>J</i><sub>SC</sub> and FF values of the devices. Therefore, power conversion efficiency risen from 17.38% to 18.25% for the PM6/Y6 system and from 18.45% to 19.73% for the D18/L8-BO system, and it was proved that the thickness tolerance of the HPC hybrid interface was improved significantly. This hydroxyl-induced anti-aggregation strategy has demonstrated efficiency in other active layer systems. This work provides a simple and effective method to solve the aggregation problem of small molecule CIL materials, which is conducive to the commercial development of OSCs.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c02839\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c02839","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Aggregation Optimization of Cathode Interlayer via Incorporating Cellulose Enables High-Performance Organic Solar Cells
Regulating aggregation and molecular packing of small-molecule cathode interlayer (CIL) materials is a significant but imperceptible issue in the development of high-performance organic solar cells (OSCs). For the celebrity PDINN small molecule, the strong aggregation tendency of the perylene diimide molecular backbone leads to excessive crystallinity when films form, ultimately affecting the morphology and charge transport ability of the films. Herein, we address this issue by developing a hydroxyl-induced anti-aggregation strategy by introducing a suitable amount of hydroxypropyl cellulose (HPC) into the solution of PDINN, and a careful balance is achieved between the film-forming quality and the aggregation of the material. Taking two commercially available active layer systems, PM6/Y6 and D18/L8-BO, as examples, the introduction of HPC significantly increases the JSC and FF values of the devices. Therefore, power conversion efficiency risen from 17.38% to 18.25% for the PM6/Y6 system and from 18.45% to 19.73% for the D18/L8-BO system, and it was proved that the thickness tolerance of the HPC hybrid interface was improved significantly. This hydroxyl-induced anti-aggregation strategy has demonstrated efficiency in other active layer systems. This work provides a simple and effective method to solve the aggregation problem of small molecule CIL materials, which is conducive to the commercial development of OSCs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.