{"title":"非球形纳米颗粒在有序嵌段共聚物中的取向研究","authors":"Zhixin Liu, Qiuju Chen, Yangjun Yan, Jing Zhang, Rongxin Yue, Shengda Zhao, Jiaxin Yu, Xinjie Li, Quanxiao Dong, Xinghua Zhang","doi":"10.1021/acsami.5c04025","DOIUrl":null,"url":null,"abstract":"In the fields of controllable catalysis, electromagnetic field manipulation, and nanoscience, mediated self-assembly has become a key method for controlling the orientation of nonspherical nanoparticles. The ordered structures formed by block copolymer self-assembly can provide an orientation matrix for nonspherical nanoparticles. Based on self-consistent field theory, this study investigates the orientation effects of monaxially symmetric cylindrical nanoparticles in the lamellar phases formed by block copolymers. Using cylindrical and pore-containing ring nanoparticles as models for nonspherical particles, we successfully describe the particles’ anisotropy and nonconvex surface properties. Numerical results show that the orientation effect of the lamellar ordered structure exhibits a nontrivial dependence on the geometric and topological properties of nonspherical particles. In addition to interfacial tension effects, the orientation mechanism of small-sized nanoparticles mainly arises from the stretching effect of the polymer, manifested in two main effects: (1) the particle deforms the polymer chain, reducing its conformational entropy, thus tending to align in a specific orientation; (2) the orientation field at the polymer chain ends is discontinuous, and the nanoparticles can embed and adopt a specific orientation. For nonconvex nanoparticles, the geometric size of the pore structure adjusts the polymer’s free volume, influencing the orientation effect. This study not only deepens the understanding of the orientation mechanism in block copolymer-mediated nanoparticle self-assembly, but also provides potential theoretical insights for the design and application of energy catalysis, biomedical materials, and functional nanostructures.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"24 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orientation of Nonspherical Nanoparticles in Ordered Block Copolymer for Functional Materials\",\"authors\":\"Zhixin Liu, Qiuju Chen, Yangjun Yan, Jing Zhang, Rongxin Yue, Shengda Zhao, Jiaxin Yu, Xinjie Li, Quanxiao Dong, Xinghua Zhang\",\"doi\":\"10.1021/acsami.5c04025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the fields of controllable catalysis, electromagnetic field manipulation, and nanoscience, mediated self-assembly has become a key method for controlling the orientation of nonspherical nanoparticles. The ordered structures formed by block copolymer self-assembly can provide an orientation matrix for nonspherical nanoparticles. Based on self-consistent field theory, this study investigates the orientation effects of monaxially symmetric cylindrical nanoparticles in the lamellar phases formed by block copolymers. Using cylindrical and pore-containing ring nanoparticles as models for nonspherical particles, we successfully describe the particles’ anisotropy and nonconvex surface properties. Numerical results show that the orientation effect of the lamellar ordered structure exhibits a nontrivial dependence on the geometric and topological properties of nonspherical particles. In addition to interfacial tension effects, the orientation mechanism of small-sized nanoparticles mainly arises from the stretching effect of the polymer, manifested in two main effects: (1) the particle deforms the polymer chain, reducing its conformational entropy, thus tending to align in a specific orientation; (2) the orientation field at the polymer chain ends is discontinuous, and the nanoparticles can embed and adopt a specific orientation. For nonconvex nanoparticles, the geometric size of the pore structure adjusts the polymer’s free volume, influencing the orientation effect. This study not only deepens the understanding of the orientation mechanism in block copolymer-mediated nanoparticle self-assembly, but also provides potential theoretical insights for the design and application of energy catalysis, biomedical materials, and functional nanostructures.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c04025\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c04025","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Orientation of Nonspherical Nanoparticles in Ordered Block Copolymer for Functional Materials
In the fields of controllable catalysis, electromagnetic field manipulation, and nanoscience, mediated self-assembly has become a key method for controlling the orientation of nonspherical nanoparticles. The ordered structures formed by block copolymer self-assembly can provide an orientation matrix for nonspherical nanoparticles. Based on self-consistent field theory, this study investigates the orientation effects of monaxially symmetric cylindrical nanoparticles in the lamellar phases formed by block copolymers. Using cylindrical and pore-containing ring nanoparticles as models for nonspherical particles, we successfully describe the particles’ anisotropy and nonconvex surface properties. Numerical results show that the orientation effect of the lamellar ordered structure exhibits a nontrivial dependence on the geometric and topological properties of nonspherical particles. In addition to interfacial tension effects, the orientation mechanism of small-sized nanoparticles mainly arises from the stretching effect of the polymer, manifested in two main effects: (1) the particle deforms the polymer chain, reducing its conformational entropy, thus tending to align in a specific orientation; (2) the orientation field at the polymer chain ends is discontinuous, and the nanoparticles can embed and adopt a specific orientation. For nonconvex nanoparticles, the geometric size of the pore structure adjusts the polymer’s free volume, influencing the orientation effect. This study not only deepens the understanding of the orientation mechanism in block copolymer-mediated nanoparticle self-assembly, but also provides potential theoretical insights for the design and application of energy catalysis, biomedical materials, and functional nanostructures.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.