{"title":"基于Nambu-Jona-Lasinio描述的两味QCD在θ=π处的一阶CP相变","authors":"Yuanyuan Wang, Shinya Matsuzaki, Mamiya Kawaguchi, Akio Tomiya","doi":"10.1103/physrevd.111.074028","DOIUrl":null,"url":null,"abstract":"We discuss the thermal C</a:mi>P</a:mi></a:math> phase transition in QCD at <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>θ</c:mi><c:mo>=</c:mo><c:mi>π</c:mi></c:math> under a weak magnetic field background, where the electromagnetic scale anomaly gets significant. To be explicit, we work on a two-flavor Nambu–Jona-Lasinio model at <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>θ</e:mi><e:mo>=</e:mo><e:mi>π</e:mi></e:math> in the mean field approximation, including the electromagnetic-scale anomaly term. We find that the thermal <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>C</g:mi><g:mi>P</g:mi></g:math> phase transition becomes first order and the strength of the first order gets more prominent as the magnetic field increases. The associated potential barrier is thermally created by the electromagnetic scale anomaly and gives rise to criticality due to the induced potential of a nonperturbative form <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mo>∼</i:mo><i:mfrac><i:mrow><i:mo stretchy=\"false\">|</i:mo><i:mi>e</i:mi><i:mi>B</i:mi><i:msup><i:mo stretchy=\"false\">|</i:mo><i:mn>3</i:mn></i:msup></i:mrow><i:msub><i:mi>f</i:mi><i:mi>π</i:mi></i:msub></i:mfrac><i:mfrac><i:mrow><i:mo stretchy=\"false\">|</i:mo><i:mi>P</i:mi><i:mo stretchy=\"false\">|</i:mo></i:mrow><i:mrow><i:msup><i:mi>P</i:mi><i:mn>2</i:mn></i:msup><i:mo stretchy=\"false\">+</i:mo><i:msubsup><i:mi>m</i:mi><i:mn>0</i:mn><i:mn>2</i:mn></i:msubsup></i:mrow></i:mfrac></i:math>, where <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mi>e</p:mi><p:mi>B</p:mi></p:math> denotes the magnetic field strength; <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mi>P</r:mi></r:math> is the <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:mi>C</t:mi><t:mi>P</t:mi></t:math>-order parameter, and <v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><v:msub><v:mi>m</v:mi><v:mn>0</v:mn></v:msub></v:math> is the isospin-symmetric current-quark mass. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"50 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-order CP phase transition in two-flavor QCD at θ=π under electromagnetic scale anomaly via a Nambu–Jona-Lasinio description\",\"authors\":\"Yuanyuan Wang, Shinya Matsuzaki, Mamiya Kawaguchi, Akio Tomiya\",\"doi\":\"10.1103/physrevd.111.074028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the thermal C</a:mi>P</a:mi></a:math> phase transition in QCD at <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>θ</c:mi><c:mo>=</c:mo><c:mi>π</c:mi></c:math> under a weak magnetic field background, where the electromagnetic scale anomaly gets significant. To be explicit, we work on a two-flavor Nambu–Jona-Lasinio model at <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>θ</e:mi><e:mo>=</e:mo><e:mi>π</e:mi></e:math> in the mean field approximation, including the electromagnetic-scale anomaly term. We find that the thermal <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>C</g:mi><g:mi>P</g:mi></g:math> phase transition becomes first order and the strength of the first order gets more prominent as the magnetic field increases. The associated potential barrier is thermally created by the electromagnetic scale anomaly and gives rise to criticality due to the induced potential of a nonperturbative form <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mo>∼</i:mo><i:mfrac><i:mrow><i:mo stretchy=\\\"false\\\">|</i:mo><i:mi>e</i:mi><i:mi>B</i:mi><i:msup><i:mo stretchy=\\\"false\\\">|</i:mo><i:mn>3</i:mn></i:msup></i:mrow><i:msub><i:mi>f</i:mi><i:mi>π</i:mi></i:msub></i:mfrac><i:mfrac><i:mrow><i:mo stretchy=\\\"false\\\">|</i:mo><i:mi>P</i:mi><i:mo stretchy=\\\"false\\\">|</i:mo></i:mrow><i:mrow><i:msup><i:mi>P</i:mi><i:mn>2</i:mn></i:msup><i:mo stretchy=\\\"false\\\">+</i:mo><i:msubsup><i:mi>m</i:mi><i:mn>0</i:mn><i:mn>2</i:mn></i:msubsup></i:mrow></i:mfrac></i:math>, where <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:mi>e</p:mi><p:mi>B</p:mi></p:math> denotes the magnetic field strength; <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><r:mi>P</r:mi></r:math> is the <t:math xmlns:t=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><t:mi>C</t:mi><t:mi>P</t:mi></t:math>-order parameter, and <v:math xmlns:v=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><v:msub><v:mi>m</v:mi><v:mn>0</v:mn></v:msub></v:math> is the isospin-symmetric current-quark mass. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.074028\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.074028","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
First-order CP phase transition in two-flavor QCD at θ=π under electromagnetic scale anomaly via a Nambu–Jona-Lasinio description
We discuss the thermal CP phase transition in QCD at θ=π under a weak magnetic field background, where the electromagnetic scale anomaly gets significant. To be explicit, we work on a two-flavor Nambu–Jona-Lasinio model at θ=π in the mean field approximation, including the electromagnetic-scale anomaly term. We find that the thermal CP phase transition becomes first order and the strength of the first order gets more prominent as the magnetic field increases. The associated potential barrier is thermally created by the electromagnetic scale anomaly and gives rise to criticality due to the induced potential of a nonperturbative form ∼|eB|3fπ|P|P2+m02, where eB denotes the magnetic field strength; P is the CP-order parameter, and m0 is the isospin-symmetric current-quark mass. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.