Aron Kerschbaumer, Marko Ljubotina, Maksym Serbyn, Jean-Yves Desaules
{"title":"雷德贝格模拟器中超越 PXP 模型的量子多体疤痕","authors":"Aron Kerschbaumer, Marko Ljubotina, Maksym Serbyn, Jean-Yves Desaules","doi":"10.1103/physrevlett.134.160401","DOIUrl":null,"url":null,"abstract":"Persistent revivals recently observed in Rydberg atom simulators have challenged our understanding of thermalization and attracted much interest to the concept of quantum many-body scars (QMBSs). QMBSs are non-thermal highly excited eigenstates that coexist with typical eigenstates in the spectrum of many-body Hamiltonians, and have since been reported in multiple theoretical models, including the so-called PXP model, approximately realized by Rydberg simulators. At the same time, questions of how common QMBSs are and in what models they are physically realized remain open. In this Letter, we demonstrate that QMBSs exist in a broader family of models that includes and generalizes PXP to longer-range constraints and states with different periodicity. We show that in each model, QMBS families can be found. Each of them relies on a different approximate su</a:mi>(</a:mo>2</a:mn>)</a:mo></a:math> algebra, leading to oscillatory dynamics in all cases. However, in contrast to the PXP model, their observation requires launching dynamics from weakly entangled initial states rather than from a product state. QMBSs reported here may be experimentally probed using Rydberg atom simulator in the regime of longer-range Rydberg blockades. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"17 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Many-Body Scars beyond the PXP Model in Rydberg Simulators\",\"authors\":\"Aron Kerschbaumer, Marko Ljubotina, Maksym Serbyn, Jean-Yves Desaules\",\"doi\":\"10.1103/physrevlett.134.160401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistent revivals recently observed in Rydberg atom simulators have challenged our understanding of thermalization and attracted much interest to the concept of quantum many-body scars (QMBSs). QMBSs are non-thermal highly excited eigenstates that coexist with typical eigenstates in the spectrum of many-body Hamiltonians, and have since been reported in multiple theoretical models, including the so-called PXP model, approximately realized by Rydberg simulators. At the same time, questions of how common QMBSs are and in what models they are physically realized remain open. In this Letter, we demonstrate that QMBSs exist in a broader family of models that includes and generalizes PXP to longer-range constraints and states with different periodicity. We show that in each model, QMBS families can be found. Each of them relies on a different approximate su</a:mi>(</a:mo>2</a:mn>)</a:mo></a:math> algebra, leading to oscillatory dynamics in all cases. However, in contrast to the PXP model, their observation requires launching dynamics from weakly entangled initial states rather than from a product state. QMBSs reported here may be experimentally probed using Rydberg atom simulator in the regime of longer-range Rydberg blockades. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.160401\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.160401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum Many-Body Scars beyond the PXP Model in Rydberg Simulators
Persistent revivals recently observed in Rydberg atom simulators have challenged our understanding of thermalization and attracted much interest to the concept of quantum many-body scars (QMBSs). QMBSs are non-thermal highly excited eigenstates that coexist with typical eigenstates in the spectrum of many-body Hamiltonians, and have since been reported in multiple theoretical models, including the so-called PXP model, approximately realized by Rydberg simulators. At the same time, questions of how common QMBSs are and in what models they are physically realized remain open. In this Letter, we demonstrate that QMBSs exist in a broader family of models that includes and generalizes PXP to longer-range constraints and states with different periodicity. We show that in each model, QMBS families can be found. Each of them relies on a different approximate su(2) algebra, leading to oscillatory dynamics in all cases. However, in contrast to the PXP model, their observation requires launching dynamics from weakly entangled initial states rather than from a product state. QMBSs reported here may be experimentally probed using Rydberg atom simulator in the regime of longer-range Rydberg blockades. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks