倾斜反铁磁体中磁振子干涉控制自旋电流

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Lutong Sheng, Anna Duvakina, Hanchen Wang, Kei Yamamoto, Rundong Yuan, Jinlong Wang, Peng Chen, Wenqing He, Kanglin Yu, Yuelin Zhang, Jilei Chen, Junfeng Hu, Wenjie Song, Song Liu, Xiufeng Han, Dapeng Yu, Jean-Philippe Ansermet, Sadamichi Maekawa, Dirk Grundler, Haiming Yu
{"title":"倾斜反铁磁体中磁振子干涉控制自旋电流","authors":"Lutong Sheng, Anna Duvakina, Hanchen Wang, Kei Yamamoto, Rundong Yuan, Jinlong Wang, Peng Chen, Wenqing He, Kanglin Yu, Yuelin Zhang, Jilei Chen, Junfeng Hu, Wenjie Song, Song Liu, Xiufeng Han, Dapeng Yu, Jean-Philippe Ansermet, Sadamichi Maekawa, Dirk Grundler, Haiming Yu","doi":"10.1038/s41567-025-02819-7","DOIUrl":null,"url":null,"abstract":"<p>Controlling the spin current lies at the heart of spintronics and its applications. In ferromagnets, the sign of spin currents is fixed once the current direction is determined. However, spin currents in antiferromagnets can possess opposite polarizations, but this requires enormous magnetic fields to lift the degeneracy between the two modes. Therefore, controlling spin currents with opposite polarization is still a challenge. Here we demonstrate the control of spin currents at room temperature by magnon interference in a canted antiferromagnet, namely, haematite that has recently been classified as an altermagnet. Magneto-optical characterization by Brillouin light scattering reveals that the spatial periodicity of the beating patterns is tunable via the microwave frequency. We further observe that the inverse spin Hall voltage changes sign as the frequency is tuned, evincing a frequency-controlled switching of polarization of pure spin currents. Our work highlights the use of antiferromagnetic magnon interference to control spin currents, which substantially extends the horizon for the emerging field of coherent antiferromagnetic spintronics.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"33 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of spin currents by magnon interference in a canted antiferromagnet\",\"authors\":\"Lutong Sheng, Anna Duvakina, Hanchen Wang, Kei Yamamoto, Rundong Yuan, Jinlong Wang, Peng Chen, Wenqing He, Kanglin Yu, Yuelin Zhang, Jilei Chen, Junfeng Hu, Wenjie Song, Song Liu, Xiufeng Han, Dapeng Yu, Jean-Philippe Ansermet, Sadamichi Maekawa, Dirk Grundler, Haiming Yu\",\"doi\":\"10.1038/s41567-025-02819-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Controlling the spin current lies at the heart of spintronics and its applications. In ferromagnets, the sign of spin currents is fixed once the current direction is determined. However, spin currents in antiferromagnets can possess opposite polarizations, but this requires enormous magnetic fields to lift the degeneracy between the two modes. Therefore, controlling spin currents with opposite polarization is still a challenge. Here we demonstrate the control of spin currents at room temperature by magnon interference in a canted antiferromagnet, namely, haematite that has recently been classified as an altermagnet. Magneto-optical characterization by Brillouin light scattering reveals that the spatial periodicity of the beating patterns is tunable via the microwave frequency. We further observe that the inverse spin Hall voltage changes sign as the frequency is tuned, evincing a frequency-controlled switching of polarization of pure spin currents. Our work highlights the use of antiferromagnetic magnon interference to control spin currents, which substantially extends the horizon for the emerging field of coherent antiferromagnetic spintronics.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02819-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02819-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自旋电流的控制是自旋电子学及其应用的核心。在铁磁体中,一旦确定了电流方向,自旋电流的符号就固定了。然而,反铁磁体中的自旋电流可以具有相反的极化,但这需要巨大的磁场来提升两种模式之间的简并。因此,控制具有相反极化的自旋电流仍然是一个挑战。在这里,我们展示了在室温下通过磁振子干涉在倾斜反铁磁体中的自旋电流的控制,即最近被归类为交流磁体的赤铁矿。布里渊光散射的磁光特性表明,振荡模式的空间周期性可以通过微波频率来调节。我们进一步观察到逆自旋霍尔电压随频率的变化而变化,证明了纯自旋电流的频率控制极化开关。我们的工作强调使用反铁磁磁子干涉来控制自旋电流,这大大扩展了相干反铁磁自旋电子学新兴领域的视野。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Control of spin currents by magnon interference in a canted antiferromagnet

Control of spin currents by magnon interference in a canted antiferromagnet

Controlling the spin current lies at the heart of spintronics and its applications. In ferromagnets, the sign of spin currents is fixed once the current direction is determined. However, spin currents in antiferromagnets can possess opposite polarizations, but this requires enormous magnetic fields to lift the degeneracy between the two modes. Therefore, controlling spin currents with opposite polarization is still a challenge. Here we demonstrate the control of spin currents at room temperature by magnon interference in a canted antiferromagnet, namely, haematite that has recently been classified as an altermagnet. Magneto-optical characterization by Brillouin light scattering reveals that the spatial periodicity of the beating patterns is tunable via the microwave frequency. We further observe that the inverse spin Hall voltage changes sign as the frequency is tuned, evincing a frequency-controlled switching of polarization of pure spin currents. Our work highlights the use of antiferromagnetic magnon interference to control spin currents, which substantially extends the horizon for the emerging field of coherent antiferromagnetic spintronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信