Jiayue Han, Tao Tuo, Wenjie Deng, Xingwei Han, Meiyu He, Chao Han, Lei Guo, Hongxi Zhou, He Yu, Jun Gou, Guangxin Li, Daojian Lu, Jun Wang
{"title":"二维/有机光电压场效应晶体管","authors":"Jiayue Han, Tao Tuo, Wenjie Deng, Xingwei Han, Meiyu He, Chao Han, Lei Guo, Hongxi Zhou, He Yu, Jun Gou, Guangxin Li, Daojian Lu, Jun Wang","doi":"10.1002/lpor.202500268","DOIUrl":null,"url":null,"abstract":"Detectors typically face a trade-off between achieving high responsivity and high-speed performance. Balancing these characteristics remains a challenge. Developing broadband infrared detection that achieves high responsivity while maintaining high-speed operation at room temperature is a key objective for the next generation of infrared sensing technologies. In this work, a novel 2D/organic hybrid photogating field-effect transistor (PVFET) capable of broadband detection spanning 488–1550 nm is reported. This device simultaneously enhances both gain and response speed, achieving a remarkable gain-bandwidth product of 1.18 × 10<sup>10</sup>, thereby overcoming the conventional trade-off between responsivity and speed. Through comprehensive analysis of the device's physical dynamics, the correlation between PVFET performance, incident wavelength, and device Fermi level is demonstrated. Notably, this device operates at an exceptionally low power consumption of 0.25 µW cm<sup>2</sup>. Building on these superior characteristics, it is further showcase the potential of this PVFET in communication applications. The proposed 2D/organic PVFET provides a promising reference for the development of next-generation high-speed, high-sensitivity photodetectors.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"64 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D/Organic Photovoltage Field-Effect Transistors\",\"authors\":\"Jiayue Han, Tao Tuo, Wenjie Deng, Xingwei Han, Meiyu He, Chao Han, Lei Guo, Hongxi Zhou, He Yu, Jun Gou, Guangxin Li, Daojian Lu, Jun Wang\",\"doi\":\"10.1002/lpor.202500268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detectors typically face a trade-off between achieving high responsivity and high-speed performance. Balancing these characteristics remains a challenge. Developing broadband infrared detection that achieves high responsivity while maintaining high-speed operation at room temperature is a key objective for the next generation of infrared sensing technologies. In this work, a novel 2D/organic hybrid photogating field-effect transistor (PVFET) capable of broadband detection spanning 488–1550 nm is reported. This device simultaneously enhances both gain and response speed, achieving a remarkable gain-bandwidth product of 1.18 × 10<sup>10</sup>, thereby overcoming the conventional trade-off between responsivity and speed. Through comprehensive analysis of the device's physical dynamics, the correlation between PVFET performance, incident wavelength, and device Fermi level is demonstrated. Notably, this device operates at an exceptionally low power consumption of 0.25 µW cm<sup>2</sup>. Building on these superior characteristics, it is further showcase the potential of this PVFET in communication applications. The proposed 2D/organic PVFET provides a promising reference for the development of next-generation high-speed, high-sensitivity photodetectors.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202500268\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500268","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Detectors typically face a trade-off between achieving high responsivity and high-speed performance. Balancing these characteristics remains a challenge. Developing broadband infrared detection that achieves high responsivity while maintaining high-speed operation at room temperature is a key objective for the next generation of infrared sensing technologies. In this work, a novel 2D/organic hybrid photogating field-effect transistor (PVFET) capable of broadband detection spanning 488–1550 nm is reported. This device simultaneously enhances both gain and response speed, achieving a remarkable gain-bandwidth product of 1.18 × 1010, thereby overcoming the conventional trade-off between responsivity and speed. Through comprehensive analysis of the device's physical dynamics, the correlation between PVFET performance, incident wavelength, and device Fermi level is demonstrated. Notably, this device operates at an exceptionally low power consumption of 0.25 µW cm2. Building on these superior characteristics, it is further showcase the potential of this PVFET in communication applications. The proposed 2D/organic PVFET provides a promising reference for the development of next-generation high-speed, high-sensitivity photodetectors.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.