{"title":"稀土掺杂纳米晶体的界面分子工程:基本原理、构建策略和先进应用","authors":"Guiqiang Pu, Junnan Song, Zhenjie Cheng, Yangmin Tang, Chengbin Kang, Jiacheng Wang","doi":"10.1002/lpor.202500156","DOIUrl":null,"url":null,"abstract":"Interfacial molecular engineering of rare earth-doped nanocrystals (RE NCs) by incorporating surface organic emitters is receiving widespread attention in the area of functional nanomaterials. The resulting organic–inorganic nanoconjugates are able to integrate individual strengths and show exciting optical/electrical/magnetic functionalities. However, there is a shortage of systematic reviews reporting the most recent progress of interfacial molecular engineering of RE NCs. Thereby, this review presents a comprehensive and timely perspective on recent advances in interfacial molecular engineering of RE NCs. The crucial theoretical knowledge is first summarized, ranging from the luminescence mechanism of organic molecules/RE NCs to the energy transfer mechanisms at the organic–inorganic interface. Construction protocols for coupling organic molecules and RE NCs are then discussed, including chemical coordination and physical adsorption pathways. In particular, beyond traditional bio-imaging/therapy, advanced applications of RE NCs enabled by interface molecular engineering are outlined, not limited to photoexcited 3D printing, light-induced photochromism/deformation, individual micro-modification, and dynamic procedure regulation. Finally, challenges and perspectives are presented to accelerate future progress and provide research guidance for the interfacial molecular engineering of RE NCs. This review provides a deeper and broader understanding of the interfacial molecular engineering of RE NC and pushes this technology closer to practical applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"6 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial Molecular Engineering of Rare Earth-Doped Nanocrystals: Basic Principles, Construction Strategies, and Advanced Applications\",\"authors\":\"Guiqiang Pu, Junnan Song, Zhenjie Cheng, Yangmin Tang, Chengbin Kang, Jiacheng Wang\",\"doi\":\"10.1002/lpor.202500156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interfacial molecular engineering of rare earth-doped nanocrystals (RE NCs) by incorporating surface organic emitters is receiving widespread attention in the area of functional nanomaterials. The resulting organic–inorganic nanoconjugates are able to integrate individual strengths and show exciting optical/electrical/magnetic functionalities. However, there is a shortage of systematic reviews reporting the most recent progress of interfacial molecular engineering of RE NCs. Thereby, this review presents a comprehensive and timely perspective on recent advances in interfacial molecular engineering of RE NCs. The crucial theoretical knowledge is first summarized, ranging from the luminescence mechanism of organic molecules/RE NCs to the energy transfer mechanisms at the organic–inorganic interface. Construction protocols for coupling organic molecules and RE NCs are then discussed, including chemical coordination and physical adsorption pathways. In particular, beyond traditional bio-imaging/therapy, advanced applications of RE NCs enabled by interface molecular engineering are outlined, not limited to photoexcited 3D printing, light-induced photochromism/deformation, individual micro-modification, and dynamic procedure regulation. Finally, challenges and perspectives are presented to accelerate future progress and provide research guidance for the interfacial molecular engineering of RE NCs. This review provides a deeper and broader understanding of the interfacial molecular engineering of RE NC and pushes this technology closer to practical applications.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202500156\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500156","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
在功能纳米材料领域,通过加入表面有机发光体对掺稀土的纳米晶体(RE NCs)进行界面分子工程正在受到广泛关注。由此产生的有机-无机纳米共轭物能够整合各自的优势,并显示出令人兴奋的光学/电学/磁学功能。然而,目前还缺少系统性综述来报道 RE NCs 界面分子工程的最新进展。因此,本综述以全面、及时的视角介绍了 RE NCs 界面分子工程的最新进展。首先总结了重要的理论知识,从有机分子/RE NCs 的发光机制到有机-无机界面的能量传递机制。然后讨论了有机分子与 RE NCs 耦合的构建方案,包括化学配位和物理吸附途径。特别是,除了传统的生物成像/治疗外,还概述了界面分子工程促成的 RE NC 的高级应用,不仅限于光激发三维打印、光诱导光致变色/变形、单个微改性和动态程序调节。最后,提出了挑战和展望,以加快未来的进展,并为可再生数控材料的界面分子工程提供研究指导。这篇综述加深了人们对可再生数控材料界面分子工程学的理解,推动了这项技术的实际应用。
Interfacial Molecular Engineering of Rare Earth-Doped Nanocrystals: Basic Principles, Construction Strategies, and Advanced Applications
Interfacial molecular engineering of rare earth-doped nanocrystals (RE NCs) by incorporating surface organic emitters is receiving widespread attention in the area of functional nanomaterials. The resulting organic–inorganic nanoconjugates are able to integrate individual strengths and show exciting optical/electrical/magnetic functionalities. However, there is a shortage of systematic reviews reporting the most recent progress of interfacial molecular engineering of RE NCs. Thereby, this review presents a comprehensive and timely perspective on recent advances in interfacial molecular engineering of RE NCs. The crucial theoretical knowledge is first summarized, ranging from the luminescence mechanism of organic molecules/RE NCs to the energy transfer mechanisms at the organic–inorganic interface. Construction protocols for coupling organic molecules and RE NCs are then discussed, including chemical coordination and physical adsorption pathways. In particular, beyond traditional bio-imaging/therapy, advanced applications of RE NCs enabled by interface molecular engineering are outlined, not limited to photoexcited 3D printing, light-induced photochromism/deformation, individual micro-modification, and dynamic procedure regulation. Finally, challenges and perspectives are presented to accelerate future progress and provide research guidance for the interfacial molecular engineering of RE NCs. This review provides a deeper and broader understanding of the interfacial molecular engineering of RE NC and pushes this technology closer to practical applications.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.