U. D. Bellon, W. Williams, A. R. Muxworthy, G. F. Souza-Junior, L. Nagy, L. Uieda, R. I. F. Trindade
{"title":"涡旋态粒子组的热磁化获取效率","authors":"U. D. Bellon, W. Williams, A. R. Muxworthy, G. F. Souza-Junior, L. Nagy, L. Uieda, R. I. F. Trindade","doi":"10.1029/2025GL114771","DOIUrl":null,"url":null,"abstract":"<p>Magmatic rocks record ambient magnetic fields during cooling, preserving them for billions of years through thermoremanent magnetization (TRM). TRM accuracy depends on particle size, shape, magnetic properties, and the number of particles available to record the field. While traditionally interpreted via Neél's single-domain theory, most particles exist in a vortex state, where complex magnetic structures require numerical modeling. We show that in fields <span></span><math>\n <semantics>\n <mrow>\n <mo>></mo>\n <mn>10</mn>\n <mspace></mspace>\n <mi>μ</mi>\n <mi>T</mi>\n </mrow>\n <annotation> ${ >} 10\\hspace*{.5em}{\\upmu }\\mathrm{T}$</annotation>\n </semantics></math>, a few thousand nanoscopic vortex-state particles can record TRM with less than 1<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math> error, regardless of shape. For weaker fields, morphology plays a crucial role, with spherical and oblate particles performing best. These findings challenge assumptions about particle requirements for faithful TRM recording and highlight the influence of grain shape in paleomagnetic studies. Our results justify using smaller geological samples and magnetic microscopy to reconstruct ancient magnetic fields with precision.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL114771","citationCount":"0","resultStr":"{\"title\":\"Efficiency of Thermoremanent Magnetization Acquisition in Vortex-State Particle Assemblies\",\"authors\":\"U. D. Bellon, W. Williams, A. R. Muxworthy, G. F. Souza-Junior, L. Nagy, L. Uieda, R. I. F. Trindade\",\"doi\":\"10.1029/2025GL114771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magmatic rocks record ambient magnetic fields during cooling, preserving them for billions of years through thermoremanent magnetization (TRM). TRM accuracy depends on particle size, shape, magnetic properties, and the number of particles available to record the field. While traditionally interpreted via Neél's single-domain theory, most particles exist in a vortex state, where complex magnetic structures require numerical modeling. We show that in fields <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>></mo>\\n <mn>10</mn>\\n <mspace></mspace>\\n <mi>μ</mi>\\n <mi>T</mi>\\n </mrow>\\n <annotation> ${ >} 10\\\\hspace*{.5em}{\\\\upmu }\\\\mathrm{T}$</annotation>\\n </semantics></math>, a few thousand nanoscopic vortex-state particles can record TRM with less than 1<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math> error, regardless of shape. For weaker fields, morphology plays a crucial role, with spherical and oblate particles performing best. These findings challenge assumptions about particle requirements for faithful TRM recording and highlight the influence of grain shape in paleomagnetic studies. Our results justify using smaller geological samples and magnetic microscopy to reconstruct ancient magnetic fields with precision.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL114771\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025GL114771\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL114771","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
岩浆岩在冷却过程中记录了周围的磁场,通过热磁化(TRM)将它们保存了数十亿年。TRM的准确性取决于颗粒的大小、形状、磁性和可用于记录磁场的颗粒数量。虽然传统上通过ne单畴理论解释,但大多数粒子存在于涡旋状态,其中复杂的磁性结构需要数值模拟。我们在fields >;10 μ T ${>} 10\hspace*{。5em}{\upmu}\mathrm{T}$,几千纳米尺度的涡态粒子无论形状如何,都能以小于1°${}}^{\circ}$的误差记录TRM。对于较弱的场,形貌起着至关重要的作用,球形和扁圆形粒子表现最好。这些发现挑战了对忠实TRM记录的粒子要求的假设,并突出了颗粒形状在古地磁研究中的影响。我们的结果证明使用较小的地质样本和磁显微镜可以精确地重建古代磁场。
Efficiency of Thermoremanent Magnetization Acquisition in Vortex-State Particle Assemblies
Magmatic rocks record ambient magnetic fields during cooling, preserving them for billions of years through thermoremanent magnetization (TRM). TRM accuracy depends on particle size, shape, magnetic properties, and the number of particles available to record the field. While traditionally interpreted via Neél's single-domain theory, most particles exist in a vortex state, where complex magnetic structures require numerical modeling. We show that in fields , a few thousand nanoscopic vortex-state particles can record TRM with less than 1 error, regardless of shape. For weaker fields, morphology plays a crucial role, with spherical and oblate particles performing best. These findings challenge assumptions about particle requirements for faithful TRM recording and highlight the influence of grain shape in paleomagnetic studies. Our results justify using smaller geological samples and magnetic microscopy to reconstruct ancient magnetic fields with precision.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.