算术Satake紧化与代数Drinfeld模形式

IF 1 2区 数学 Q1 MATHEMATICS
Urs Hartl, Chia-Fu Yu
{"title":"算术Satake紧化与代数Drinfeld模形式","authors":"Urs Hartl,&nbsp;Chia-Fu Yu","doi":"10.1112/jlms.70082","DOIUrl":null,"url":null,"abstract":"<p>In this article, we construct the arithmetic Satake compactification of the Drinfeld moduli schemes of arbitrary rank over the ring of integers of any global function field away from the level structure, and show that the universal family extends uniquely to a generalized Drinfeld module over the compactification. Using these and functorial properties, we define algebraic Drinfeld modular forms over more general bases and the action of the (prime-to-residue characteristic and level) Hecke algebra. The construction also furnishes many algebraic Drinfeld modular forms obtained from the coefficients of the universal family that are also Hecke eigenforms. Among them, we obtain generalized Hasse invariants that are already defined on the arithmetic Satake compactification and not only its special fiber. We use these generalized Hasse invariants to study the geometry of the special fiber. We conjecture that our Satake compactification is Cohen–Macaulay. If this is the case, we establish the Jacquet–Langlands correspondence (mod <span></span><math>\n <semantics>\n <mi>v</mi>\n <annotation>$v$</annotation>\n </semantics></math>) between Hecke eigensystems of rank <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math> Drinfeld modular forms and those of algebraic modular forms (in the sense of Gross) attached to a compact inner form of <span></span><math>\n <semantics>\n <msub>\n <mi>GL</mi>\n <mi>r</mi>\n </msub>\n <annotation>$\\mathop {\\rm GL}\\nolimits _r$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70082","citationCount":"0","resultStr":"{\"title\":\"Arithmetic Satake compactifications and algebraic Drinfeld modular forms\",\"authors\":\"Urs Hartl,&nbsp;Chia-Fu Yu\",\"doi\":\"10.1112/jlms.70082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we construct the arithmetic Satake compactification of the Drinfeld moduli schemes of arbitrary rank over the ring of integers of any global function field away from the level structure, and show that the universal family extends uniquely to a generalized Drinfeld module over the compactification. Using these and functorial properties, we define algebraic Drinfeld modular forms over more general bases and the action of the (prime-to-residue characteristic and level) Hecke algebra. The construction also furnishes many algebraic Drinfeld modular forms obtained from the coefficients of the universal family that are also Hecke eigenforms. Among them, we obtain generalized Hasse invariants that are already defined on the arithmetic Satake compactification and not only its special fiber. We use these generalized Hasse invariants to study the geometry of the special fiber. We conjecture that our Satake compactification is Cohen–Macaulay. If this is the case, we establish the Jacquet–Langlands correspondence (mod <span></span><math>\\n <semantics>\\n <mi>v</mi>\\n <annotation>$v$</annotation>\\n </semantics></math>) between Hecke eigensystems of rank <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math> Drinfeld modular forms and those of algebraic modular forms (in the sense of Gross) attached to a compact inner form of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>GL</mi>\\n <mi>r</mi>\\n </msub>\\n <annotation>$\\\\mathop {\\\\rm GL}\\\\nolimits _r$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70082\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70082\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了远离水平结构的任意全局函数域的整数环上的任意秩的Drinfeld模格式的算术紧化,并证明了普族在紧化上唯一地扩展到一个广义的Drinfeld模。利用这些和函子性质,我们定义了在更一般的基上的代数德林菲尔德模形式,以及(素到残数特征和水平)Hecke代数的作用。该构造还提供了许多由泛族系数得到的代数德林菲尔德模形式,这些代数德林菲尔德模形式也是赫克特征形式。其中,我们得到了在算术Satake紧化上已经定义的广义Hasse不变量,而不仅仅是它的特殊纤维。我们利用这些广义Hasse不变量来研究这种特殊光纤的几何特性。我们推测我们的Satake紧化是Cohen-Macaulay。如果是这样的话,我们建立了秩r$ r$ Drinfeld模形式的Hecke本征系统和附属于GL r$ \mathop {\rm GL}\ nollimites _r$的代数模形式的本征系统(在Gross意义上)之间的Jacquet-Langlands对应关系(mod v$ v$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Arithmetic Satake compactifications and algebraic Drinfeld modular forms

Arithmetic Satake compactifications and algebraic Drinfeld modular forms

In this article, we construct the arithmetic Satake compactification of the Drinfeld moduli schemes of arbitrary rank over the ring of integers of any global function field away from the level structure, and show that the universal family extends uniquely to a generalized Drinfeld module over the compactification. Using these and functorial properties, we define algebraic Drinfeld modular forms over more general bases and the action of the (prime-to-residue characteristic and level) Hecke algebra. The construction also furnishes many algebraic Drinfeld modular forms obtained from the coefficients of the universal family that are also Hecke eigenforms. Among them, we obtain generalized Hasse invariants that are already defined on the arithmetic Satake compactification and not only its special fiber. We use these generalized Hasse invariants to study the geometry of the special fiber. We conjecture that our Satake compactification is Cohen–Macaulay. If this is the case, we establish the Jacquet–Langlands correspondence (mod v $v$ ) between Hecke eigensystems of rank r $r$ Drinfeld modular forms and those of algebraic modular forms (in the sense of Gross) attached to a compact inner form of GL r $\mathop {\rm GL}\nolimits _r$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信