固定参数painlevev方程特函数解的渐近性质

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Hao Pan, Andrei Prokhorov
{"title":"固定参数painlevev方程特函数解的渐近性质","authors":"Hao Pan,&nbsp;Andrei Prokhorov","doi":"10.1111/sapm.70051","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we compute the small and large <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> asymptotics of the special function solutions of the Painlevé-III equation in the complex plane. We use the representation in terms of Toeplitz determinants of Bessel functions obtained by Masuda. Toeplitz determinants are rewritten as multiple contour integrals using Andrèief's identity. The small and large <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> asymptotics are obtained using elementary asymptotic methods applied to the multiple contour integral. The asymptotics is extended to the whole complex plane using analytic continuation formulas for Bessel functions. The claimed result has not appeared in the literature before. We note that the Toeplitz determinant representation is useful for numerical computations of corresponding solutions of the Painlevé-III equation.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70051","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Properties of Special Function Solutions of the Painlevé III Equation for Fixed Parameters\",\"authors\":\"Hao Pan,&nbsp;Andrei Prokhorov\",\"doi\":\"10.1111/sapm.70051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we compute the small and large <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math> asymptotics of the special function solutions of the Painlevé-III equation in the complex plane. We use the representation in terms of Toeplitz determinants of Bessel functions obtained by Masuda. Toeplitz determinants are rewritten as multiple contour integrals using Andrèief's identity. The small and large <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math> asymptotics are obtained using elementary asymptotic methods applied to the multiple contour integral. The asymptotics is extended to the whole complex plane using analytic continuation formulas for Bessel functions. The claimed result has not appeared in the literature before. We note that the Toeplitz determinant representation is useful for numerical computations of corresponding solutions of the Painlevé-III equation.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70051\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70051\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70051","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在复平面上,我们计算了painlev - iii方程的特函数解的大小x$ x$渐近性。我们使用Masuda得到的贝塞尔函数的Toeplitz行列式表示。利用安德里耶夫恒等式将托普里茨行列式改写为多个轮廓积分。利用初等渐近方法得到了多重轮廓积分的大小x$ x$渐近。利用贝塞尔函数的解析延拓公式,将渐近性推广到整个复平面。声称的结果以前没有出现在文献中。我们注意到Toeplitz行列式表示对于painlev - iii方程的相应解的数值计算是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotic Properties of Special Function Solutions of the Painlevé III Equation for Fixed Parameters

Asymptotic Properties of Special Function Solutions of the Painlevé III Equation for Fixed Parameters

In this paper, we compute the small and large x $x$ asymptotics of the special function solutions of the Painlevé-III equation in the complex plane. We use the representation in terms of Toeplitz determinants of Bessel functions obtained by Masuda. Toeplitz determinants are rewritten as multiple contour integrals using Andrèief's identity. The small and large x $x$ asymptotics are obtained using elementary asymptotic methods applied to the multiple contour integral. The asymptotics is extended to the whole complex plane using analytic continuation formulas for Bessel functions. The claimed result has not appeared in the literature before. We note that the Toeplitz determinant representation is useful for numerical computations of corresponding solutions of the Painlevé-III equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信