{"title":"从葡萄糖到绿色化学:酒石酸半醛微生物生产的突破","authors":"Shuangxi Li, Lingcheng Li, Qiwu Jiang, Jianfeng Wang, Xiaoming Sun, Liangliang Zhang, Jianfeng Yuan","doi":"10.1111/1751-7915.70149","DOIUrl":null,"url":null,"abstract":"<p>L-(+)-tartaric acid (L-TA) is a crucial hydroxy carboxylic chelator with extensive applications in the food and pharmaceutical industries. The synthesis of L-TA from renewable biomass presents a promising approach to mitigating environmental impact and advancing green energy initiatives. Previous studies revealed that a mutant transketolase (TKTA_M) could catalyse the production of tartaric semialdehyde, a precursor to L-TA. This study focuses on the development of a <i>Gluconobacter oxydans</i> cell factory for tartaric semialdehyde production, employing a combination of metabolic engineering and a modular strategy. The genetically modified <i>G. oxydans</i> T strain exhibited robust expression of the <i>tkt</i>A_M gene. The optimal pH and temperature for this strain were determined to be 6.0°C and 30°C, respectively. Under these conditions, the strain produced 32.21 ± 0.74 g/L of tartaric semialdehyde from glucose. Implementation of a “Push-Pull” strategy enhanced tartaric semialdehyde production, resulting in a 23.85% increase in the <i>G. oxydans</i> T02 cell growth. In CSLP medium with 100 g/L glucose, the fermentation process yielded 48.88 ± 2.16 g/L of tartaric semialdehyde and 7.72 ± 1.56 g/L of residual 5-KGA after 48 h. This resulted in a tartaric semialdehyde productivity rate of 1.018 g/L·h, representing an 87.82% improvement over flask fermentation. This study demonstrates a straightforward and efficient microbial process for the oxidation of glucose to tartaric semialdehyde, indicating its potential for industrial-scale production and facilitating the synthesis of L-TA from renewable resources.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70149","citationCount":"0","resultStr":"{\"title\":\"From Glucose to Green Chemistry: Breakthrough in Microbial Production of Tartaric Semialdehyde\",\"authors\":\"Shuangxi Li, Lingcheng Li, Qiwu Jiang, Jianfeng Wang, Xiaoming Sun, Liangliang Zhang, Jianfeng Yuan\",\"doi\":\"10.1111/1751-7915.70149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>L-(+)-tartaric acid (L-TA) is a crucial hydroxy carboxylic chelator with extensive applications in the food and pharmaceutical industries. The synthesis of L-TA from renewable biomass presents a promising approach to mitigating environmental impact and advancing green energy initiatives. Previous studies revealed that a mutant transketolase (TKTA_M) could catalyse the production of tartaric semialdehyde, a precursor to L-TA. This study focuses on the development of a <i>Gluconobacter oxydans</i> cell factory for tartaric semialdehyde production, employing a combination of metabolic engineering and a modular strategy. The genetically modified <i>G. oxydans</i> T strain exhibited robust expression of the <i>tkt</i>A_M gene. The optimal pH and temperature for this strain were determined to be 6.0°C and 30°C, respectively. Under these conditions, the strain produced 32.21 ± 0.74 g/L of tartaric semialdehyde from glucose. Implementation of a “Push-Pull” strategy enhanced tartaric semialdehyde production, resulting in a 23.85% increase in the <i>G. oxydans</i> T02 cell growth. In CSLP medium with 100 g/L glucose, the fermentation process yielded 48.88 ± 2.16 g/L of tartaric semialdehyde and 7.72 ± 1.56 g/L of residual 5-KGA after 48 h. This resulted in a tartaric semialdehyde productivity rate of 1.018 g/L·h, representing an 87.82% improvement over flask fermentation. This study demonstrates a straightforward and efficient microbial process for the oxidation of glucose to tartaric semialdehyde, indicating its potential for industrial-scale production and facilitating the synthesis of L-TA from renewable resources.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70149\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70149\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Glucose to Green Chemistry: Breakthrough in Microbial Production of Tartaric Semialdehyde
L-(+)-tartaric acid (L-TA) is a crucial hydroxy carboxylic chelator with extensive applications in the food and pharmaceutical industries. The synthesis of L-TA from renewable biomass presents a promising approach to mitigating environmental impact and advancing green energy initiatives. Previous studies revealed that a mutant transketolase (TKTA_M) could catalyse the production of tartaric semialdehyde, a precursor to L-TA. This study focuses on the development of a Gluconobacter oxydans cell factory for tartaric semialdehyde production, employing a combination of metabolic engineering and a modular strategy. The genetically modified G. oxydans T strain exhibited robust expression of the tktA_M gene. The optimal pH and temperature for this strain were determined to be 6.0°C and 30°C, respectively. Under these conditions, the strain produced 32.21 ± 0.74 g/L of tartaric semialdehyde from glucose. Implementation of a “Push-Pull” strategy enhanced tartaric semialdehyde production, resulting in a 23.85% increase in the G. oxydans T02 cell growth. In CSLP medium with 100 g/L glucose, the fermentation process yielded 48.88 ± 2.16 g/L of tartaric semialdehyde and 7.72 ± 1.56 g/L of residual 5-KGA after 48 h. This resulted in a tartaric semialdehyde productivity rate of 1.018 g/L·h, representing an 87.82% improvement over flask fermentation. This study demonstrates a straightforward and efficient microbial process for the oxidation of glucose to tartaric semialdehyde, indicating its potential for industrial-scale production and facilitating the synthesis of L-TA from renewable resources.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes