从葡萄糖到绿色化学:酒石酸半醛微生物生产的突破

IF 5.7 2区 生物学
Shuangxi Li, Lingcheng Li, Qiwu Jiang, Jianfeng Wang, Xiaoming Sun, Liangliang Zhang, Jianfeng Yuan
{"title":"从葡萄糖到绿色化学:酒石酸半醛微生物生产的突破","authors":"Shuangxi Li,&nbsp;Lingcheng Li,&nbsp;Qiwu Jiang,&nbsp;Jianfeng Wang,&nbsp;Xiaoming Sun,&nbsp;Liangliang Zhang,&nbsp;Jianfeng Yuan","doi":"10.1111/1751-7915.70149","DOIUrl":null,"url":null,"abstract":"<p>L-(+)-tartaric acid (L-TA) is a crucial hydroxy carboxylic chelator with extensive applications in the food and pharmaceutical industries. The synthesis of L-TA from renewable biomass presents a promising approach to mitigating environmental impact and advancing green energy initiatives. Previous studies revealed that a mutant transketolase (TKTA_M) could catalyse the production of tartaric semialdehyde, a precursor to L-TA. This study focuses on the development of a <i>Gluconobacter oxydans</i> cell factory for tartaric semialdehyde production, employing a combination of metabolic engineering and a modular strategy. The genetically modified <i>G. oxydans</i> T strain exhibited robust expression of the <i>tkt</i>A_M gene. The optimal pH and temperature for this strain were determined to be 6.0°C and 30°C, respectively. Under these conditions, the strain produced 32.21 ± 0.74 g/L of tartaric semialdehyde from glucose. Implementation of a “Push-Pull” strategy enhanced tartaric semialdehyde production, resulting in a 23.85% increase in the <i>G. oxydans</i> T02 cell growth. In CSLP medium with 100 g/L glucose, the fermentation process yielded 48.88 ± 2.16 g/L of tartaric semialdehyde and 7.72 ± 1.56 g/L of residual 5-KGA after 48 h. This resulted in a tartaric semialdehyde productivity rate of 1.018 g/L·h, representing an 87.82% improvement over flask fermentation. This study demonstrates a straightforward and efficient microbial process for the oxidation of glucose to tartaric semialdehyde, indicating its potential for industrial-scale production and facilitating the synthesis of L-TA from renewable resources.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70149","citationCount":"0","resultStr":"{\"title\":\"From Glucose to Green Chemistry: Breakthrough in Microbial Production of Tartaric Semialdehyde\",\"authors\":\"Shuangxi Li,&nbsp;Lingcheng Li,&nbsp;Qiwu Jiang,&nbsp;Jianfeng Wang,&nbsp;Xiaoming Sun,&nbsp;Liangliang Zhang,&nbsp;Jianfeng Yuan\",\"doi\":\"10.1111/1751-7915.70149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>L-(+)-tartaric acid (L-TA) is a crucial hydroxy carboxylic chelator with extensive applications in the food and pharmaceutical industries. The synthesis of L-TA from renewable biomass presents a promising approach to mitigating environmental impact and advancing green energy initiatives. Previous studies revealed that a mutant transketolase (TKTA_M) could catalyse the production of tartaric semialdehyde, a precursor to L-TA. This study focuses on the development of a <i>Gluconobacter oxydans</i> cell factory for tartaric semialdehyde production, employing a combination of metabolic engineering and a modular strategy. The genetically modified <i>G. oxydans</i> T strain exhibited robust expression of the <i>tkt</i>A_M gene. The optimal pH and temperature for this strain were determined to be 6.0°C and 30°C, respectively. Under these conditions, the strain produced 32.21 ± 0.74 g/L of tartaric semialdehyde from glucose. Implementation of a “Push-Pull” strategy enhanced tartaric semialdehyde production, resulting in a 23.85% increase in the <i>G. oxydans</i> T02 cell growth. In CSLP medium with 100 g/L glucose, the fermentation process yielded 48.88 ± 2.16 g/L of tartaric semialdehyde and 7.72 ± 1.56 g/L of residual 5-KGA after 48 h. This resulted in a tartaric semialdehyde productivity rate of 1.018 g/L·h, representing an 87.82% improvement over flask fermentation. This study demonstrates a straightforward and efficient microbial process for the oxidation of glucose to tartaric semialdehyde, indicating its potential for industrial-scale production and facilitating the synthesis of L-TA from renewable resources.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70149\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70149\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

L-(+)-酒石酸(L- ta)是一种重要的羟基羧酸螯合剂,在食品和制药工业中有着广泛的应用。从可再生生物质中合成L-TA为减轻环境影响和推进绿色能源倡议提供了一种有前途的方法。先前的研究表明,一种突变体转酮酶(TKTA_M)可以催化酒石酸半醛的产生,酒石酸半醛是L-TA的前体。本研究的重点是利用代谢工程和模块化策略的结合,开发氧化葡萄糖杆菌生产酒石酸半醛的细胞工厂。经基因修饰的氧化革霉T菌株显示了tktA_M基因的强表达。该菌株的最佳pH和温度分别为6.0°C和30°C。在此条件下,菌株从葡萄糖中产生酒石酸半醛32.21±0.74 g/L。“推拉”策略的实施提高了酒石酸半醛的产量,导致G. oxydans T02细胞的生长增加了23.85%。在含100 g/L葡萄糖的CSLP培养基中,发酵48 h后酒石酸半醛为48.88±2.16 g/L,残留5-KGA为7.72±1.56 g/L。结果酒石酸半醛产率为1.018 g/L·h,比烧瓶发酵提高87.82%。本研究展示了一种简单有效的微生物氧化葡萄糖生成酒石酸半醛的过程,表明其具有工业规模生产的潜力,并促进了从可再生资源合成L-TA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From Glucose to Green Chemistry: Breakthrough in Microbial Production of Tartaric Semialdehyde

From Glucose to Green Chemistry: Breakthrough in Microbial Production of Tartaric Semialdehyde

L-(+)-tartaric acid (L-TA) is a crucial hydroxy carboxylic chelator with extensive applications in the food and pharmaceutical industries. The synthesis of L-TA from renewable biomass presents a promising approach to mitigating environmental impact and advancing green energy initiatives. Previous studies revealed that a mutant transketolase (TKTA_M) could catalyse the production of tartaric semialdehyde, a precursor to L-TA. This study focuses on the development of a Gluconobacter oxydans cell factory for tartaric semialdehyde production, employing a combination of metabolic engineering and a modular strategy. The genetically modified G. oxydans T strain exhibited robust expression of the tktA_M gene. The optimal pH and temperature for this strain were determined to be 6.0°C and 30°C, respectively. Under these conditions, the strain produced 32.21 ± 0.74 g/L of tartaric semialdehyde from glucose. Implementation of a “Push-Pull” strategy enhanced tartaric semialdehyde production, resulting in a 23.85% increase in the G. oxydans T02 cell growth. In CSLP medium with 100 g/L glucose, the fermentation process yielded 48.88 ± 2.16 g/L of tartaric semialdehyde and 7.72 ± 1.56 g/L of residual 5-KGA after 48 h. This resulted in a tartaric semialdehyde productivity rate of 1.018 g/L·h, representing an 87.82% improvement over flask fermentation. This study demonstrates a straightforward and efficient microbial process for the oxidation of glucose to tartaric semialdehyde, indicating its potential for industrial-scale production and facilitating the synthesis of L-TA from renewable resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信