Tilia Zinnecker, Kristin Thiele, Timo Schmidberger, Yvonne Genzel, Udo Reichl
{"title":"甲型流感病毒生产遵循质量设计原则","authors":"Tilia Zinnecker, Kristin Thiele, Timo Schmidberger, Yvonne Genzel, Udo Reichl","doi":"10.1002/elsc.70027","DOIUrl":null,"url":null,"abstract":"<p>Establishing manufacturing processes for cell culture-based pharmaceutical products involves managing multiple parameters that can affect yield and efficiency, as well as process robustness and product quality. Implementing Quality by Design (QbD) principles can support process optimization, while streamlining the chemistry, manufacturing, and control aspects for regulatory approval. In this study, we mimic a QbD approach based on an influenza A virus production process using two clonal suspension Madin-Darby canine kidney (MDCK) cell lines with distinct characteristics. We performed a quantitative risk assessment including biological and technical parameters to identify the Critical Process Parameters (CPPs). To comprehensively study the effects and interactions of four CPPs, we used an Ambr 15 scale-down system following a Design of Experiments (DoE) approach. After data analysis and modeling, we obtained design spaces characterized by high robustness with a less than 1% risk of failure and even some indications for virus titer and yield improvement, while keeping process-related impurities such as DNA and total protein concentration low. These findings were subsequently verified at a more than 100-fold higher working volume. Taken together, our approach may stimulate ideas for the implementation of streamlined process development and regulatory approval in the field of viral vaccine production.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70027","citationCount":"0","resultStr":"{\"title\":\"Influenza A Virus Production Following Quality by Design Principles\",\"authors\":\"Tilia Zinnecker, Kristin Thiele, Timo Schmidberger, Yvonne Genzel, Udo Reichl\",\"doi\":\"10.1002/elsc.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Establishing manufacturing processes for cell culture-based pharmaceutical products involves managing multiple parameters that can affect yield and efficiency, as well as process robustness and product quality. Implementing Quality by Design (QbD) principles can support process optimization, while streamlining the chemistry, manufacturing, and control aspects for regulatory approval. In this study, we mimic a QbD approach based on an influenza A virus production process using two clonal suspension Madin-Darby canine kidney (MDCK) cell lines with distinct characteristics. We performed a quantitative risk assessment including biological and technical parameters to identify the Critical Process Parameters (CPPs). To comprehensively study the effects and interactions of four CPPs, we used an Ambr 15 scale-down system following a Design of Experiments (DoE) approach. After data analysis and modeling, we obtained design spaces characterized by high robustness with a less than 1% risk of failure and even some indications for virus titer and yield improvement, while keeping process-related impurities such as DNA and total protein concentration low. These findings were subsequently verified at a more than 100-fold higher working volume. Taken together, our approach may stimulate ideas for the implementation of streamlined process development and regulatory approval in the field of viral vaccine production.</p>\",\"PeriodicalId\":11678,\"journal\":{\"name\":\"Engineering in Life Sciences\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Life Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsc.70027\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.70027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Influenza A Virus Production Following Quality by Design Principles
Establishing manufacturing processes for cell culture-based pharmaceutical products involves managing multiple parameters that can affect yield and efficiency, as well as process robustness and product quality. Implementing Quality by Design (QbD) principles can support process optimization, while streamlining the chemistry, manufacturing, and control aspects for regulatory approval. In this study, we mimic a QbD approach based on an influenza A virus production process using two clonal suspension Madin-Darby canine kidney (MDCK) cell lines with distinct characteristics. We performed a quantitative risk assessment including biological and technical parameters to identify the Critical Process Parameters (CPPs). To comprehensively study the effects and interactions of four CPPs, we used an Ambr 15 scale-down system following a Design of Experiments (DoE) approach. After data analysis and modeling, we obtained design spaces characterized by high robustness with a less than 1% risk of failure and even some indications for virus titer and yield improvement, while keeping process-related impurities such as DNA and total protein concentration low. These findings were subsequently verified at a more than 100-fold higher working volume. Taken together, our approach may stimulate ideas for the implementation of streamlined process development and regulatory approval in the field of viral vaccine production.
期刊介绍:
Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.