Qianqian Ma, Yilin Wang, Zonglin Yi, Lijing Xie, Fangyuan Su, Guohua Sun, Gongling Hui, Wei Xie, Chengmeng Chen, Yaqin Hou
{"title":"酚醛树脂基碳微球的可控合成及其储钠性能研究","authors":"Qianqian Ma, Yilin Wang, Zonglin Yi, Lijing Xie, Fangyuan Su, Guohua Sun, Gongling Hui, Wei Xie, Chengmeng Chen, Yaqin Hou","doi":"10.1002/slct.202500414","DOIUrl":null,"url":null,"abstract":"<p>Phenolic resin is considered a promising precursor for advanced hard carbon anodes in sodium-ion batteries (NIBs) due to its ease of design, structural stability, and high residual carbon yield. However, the practical application of hard carbon is affected by its closed-pore content and structure. Here, we achieve fine control over the cross-linking structure of phenolic resin precursors by adjusting the catalyst content in the system, followed by high-temperature carbonization to produce phenolic resin-based carbon microspheres with small sizes (2–4 µm), monodispersity, and a narrow spherical diameter distribution. Based on this, we deeply explore the intrinsic relationship between the microstructure of these resin-based carbon microspheres and their sodium storage performance in NIBs. This strategy can provide a feasible molecular cross-linking engineering approach for the development of closed pores in phenolic resin-based hard carbon to tune electrochemical properties such as the plateau region capacity.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 16","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Controlled Synthesis of Phenolic Resin-Based Carbon Microspheres and Their Sodium Storage Behavior\",\"authors\":\"Qianqian Ma, Yilin Wang, Zonglin Yi, Lijing Xie, Fangyuan Su, Guohua Sun, Gongling Hui, Wei Xie, Chengmeng Chen, Yaqin Hou\",\"doi\":\"10.1002/slct.202500414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phenolic resin is considered a promising precursor for advanced hard carbon anodes in sodium-ion batteries (NIBs) due to its ease of design, structural stability, and high residual carbon yield. However, the practical application of hard carbon is affected by its closed-pore content and structure. Here, we achieve fine control over the cross-linking structure of phenolic resin precursors by adjusting the catalyst content in the system, followed by high-temperature carbonization to produce phenolic resin-based carbon microspheres with small sizes (2–4 µm), monodispersity, and a narrow spherical diameter distribution. Based on this, we deeply explore the intrinsic relationship between the microstructure of these resin-based carbon microspheres and their sodium storage performance in NIBs. This strategy can provide a feasible molecular cross-linking engineering approach for the development of closed pores in phenolic resin-based hard carbon to tune electrochemical properties such as the plateau region capacity.</p>\",\"PeriodicalId\":146,\"journal\":{\"name\":\"ChemistrySelect\",\"volume\":\"10 16\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistrySelect\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/slct.202500414\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202500414","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on the Controlled Synthesis of Phenolic Resin-Based Carbon Microspheres and Their Sodium Storage Behavior
Phenolic resin is considered a promising precursor for advanced hard carbon anodes in sodium-ion batteries (NIBs) due to its ease of design, structural stability, and high residual carbon yield. However, the practical application of hard carbon is affected by its closed-pore content and structure. Here, we achieve fine control over the cross-linking structure of phenolic resin precursors by adjusting the catalyst content in the system, followed by high-temperature carbonization to produce phenolic resin-based carbon microspheres with small sizes (2–4 µm), monodispersity, and a narrow spherical diameter distribution. Based on this, we deeply explore the intrinsic relationship between the microstructure of these resin-based carbon microspheres and their sodium storage performance in NIBs. This strategy can provide a feasible molecular cross-linking engineering approach for the development of closed pores in phenolic resin-based hard carbon to tune electrochemical properties such as the plateau region capacity.
期刊介绍:
ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.