融合HRRP时频分析和多尺度特征的卷积神经网络目标识别

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaohui Wei, Zhulin Zong
{"title":"融合HRRP时频分析和多尺度特征的卷积神经网络目标识别","authors":"Xiaohui Wei,&nbsp;Zhulin Zong","doi":"10.1049/rsn2.70019","DOIUrl":null,"url":null,"abstract":"<p>For radar target recognition in high-resolution range profiles (HRRP) under low signal-to-noise ratio (SNR) conditions, traditional methods typically involve denoising followed by recognition. However, these methods struggle with complex noise. To enhance HRRP information extraction, this paper proposes an integrated approach combining noise reduction and recognition. First, the short-time Fourier transform (STFT) is improved with a complex Gaussian window to enhance time-frequency resolution. Then, multi-scale analysis is applied by introducing scale values to better capture detailed target features. Differential operations are used to highlight scattering points and edges, improving recognition accuracy. A convolutional neural network (CNN) is employed to extract multi-level features for target recognition. Experimental results on a simulated HRRP dataset from the U.S. Air Force Research Laboratory (AFRL) demonstrate the proposed method's superior performance. It outperforms traditional methods in both accuracy and robustness, offering stronger noise resistance and better utilisation of HRRP's rich features, providing an effective solution for radar target recognition tasks.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70019","citationCount":"0","resultStr":"{\"title\":\"Fusion of HRRP Time-Frequency Analysis and Multi-Scale Features for Convolutional Neural Network-Based Target Recognition\",\"authors\":\"Xiaohui Wei,&nbsp;Zhulin Zong\",\"doi\":\"10.1049/rsn2.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For radar target recognition in high-resolution range profiles (HRRP) under low signal-to-noise ratio (SNR) conditions, traditional methods typically involve denoising followed by recognition. However, these methods struggle with complex noise. To enhance HRRP information extraction, this paper proposes an integrated approach combining noise reduction and recognition. First, the short-time Fourier transform (STFT) is improved with a complex Gaussian window to enhance time-frequency resolution. Then, multi-scale analysis is applied by introducing scale values to better capture detailed target features. Differential operations are used to highlight scattering points and edges, improving recognition accuracy. A convolutional neural network (CNN) is employed to extract multi-level features for target recognition. Experimental results on a simulated HRRP dataset from the U.S. Air Force Research Laboratory (AFRL) demonstrate the proposed method's superior performance. It outperforms traditional methods in both accuracy and robustness, offering stronger noise resistance and better utilisation of HRRP's rich features, providing an effective solution for radar target recognition tasks.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70019\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70019","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对于低信噪比条件下的高分辨率距离像(HRRP)雷达目标识别,传统方法通常是先去噪再识别。然而,这些方法与复杂的噪声作斗争。为了提高HRRP信息的提取效率,本文提出了一种降噪与识别相结合的综合方法。首先,利用复高斯窗对短时傅里叶变换(STFT)进行改进,提高时频分辨率;然后,通过引入尺度值,应用多尺度分析,更好地捕捉目标的细节特征;利用差分运算突出散射点和边缘,提高识别精度。采用卷积神经网络(CNN)提取多层次特征进行目标识别。在美国空军研究实验室(AFRL)的模拟HRRP数据集上的实验结果证明了该方法的优越性能。该方法在精度和鲁棒性上均优于传统方法,具有更强的抗噪能力和更好地利用HRRP的丰富特性,为雷达目标识别任务提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fusion of HRRP Time-Frequency Analysis and Multi-Scale Features for Convolutional Neural Network-Based Target Recognition

Fusion of HRRP Time-Frequency Analysis and Multi-Scale Features for Convolutional Neural Network-Based Target Recognition

For radar target recognition in high-resolution range profiles (HRRP) under low signal-to-noise ratio (SNR) conditions, traditional methods typically involve denoising followed by recognition. However, these methods struggle with complex noise. To enhance HRRP information extraction, this paper proposes an integrated approach combining noise reduction and recognition. First, the short-time Fourier transform (STFT) is improved with a complex Gaussian window to enhance time-frequency resolution. Then, multi-scale analysis is applied by introducing scale values to better capture detailed target features. Differential operations are used to highlight scattering points and edges, improving recognition accuracy. A convolutional neural network (CNN) is employed to extract multi-level features for target recognition. Experimental results on a simulated HRRP dataset from the U.S. Air Force Research Laboratory (AFRL) demonstrate the proposed method's superior performance. It outperforms traditional methods in both accuracy and robustness, offering stronger noise resistance and better utilisation of HRRP's rich features, providing an effective solution for radar target recognition tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信