厌氧消化菌群的代谢分离和功能基因簇

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Yubo Wang, Ruoqun Zhang, Chunxiao Wang, Weifu Yan, Tong Zhang, Feng Ju
{"title":"厌氧消化菌群的代谢分离和功能基因簇","authors":"Yubo Wang,&nbsp;Ruoqun Zhang,&nbsp;Chunxiao Wang,&nbsp;Weifu Yan,&nbsp;Tong Zhang,&nbsp;Feng Ju","doi":"10.1111/1462-2920.70091","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A combined enrichment experiment and genome-centric meta-omics analysis demonstrated that metabolic specificity, rather than flexibility, governs the anaerobic digestion (AD) ecosystem. This study provides new insights into interspecies electron transfer in the AD process, highlighting a segregation in the metabolism of H<sub>2</sub> and formate. Our findings show that H<sub>2</sub> acts as the primary electron sink for recycling redox cofactors, including NAD<sup>+</sup> and oxidised ferredoxin (Fd<sub>ox</sub>), during primary fermentation, while formate is the dominant electron carrier in secondary fermentation, especially under conditions with elevated H<sub>2</sub> concentrations. Importantly, no evidence of biochemical interconversion between H<sub>2</sub> and formate was identified in the primary fermenting bacteria or in syntrophs enriched in this study. This segregation of H<sub>2</sub> and formate metabolism likely benefits the anaerobic oxidation of butyrate and propionate with a higher tolerance to H<sub>2</sub> accumulation. Moreover, this study highlights the functional partitioning among microbial populations in key AD niches: primary fermentation, secondary fermentation (syntrophic acetogenesis), hydrogenotrophic methanogenesis, and acetoclastic methanogenesis. Genome-centric analysis of the AD microbiome identified several key functional gene clusters, which could enhance genome-centric genotype–phenotype correlations, particularly for strict anaerobes that are difficult to isolate and characterise in pure culture.</p>\n </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic Segregation and Functional Gene Clusters in Anaerobic Digestion Consortia\",\"authors\":\"Yubo Wang,&nbsp;Ruoqun Zhang,&nbsp;Chunxiao Wang,&nbsp;Weifu Yan,&nbsp;Tong Zhang,&nbsp;Feng Ju\",\"doi\":\"10.1111/1462-2920.70091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A combined enrichment experiment and genome-centric meta-omics analysis demonstrated that metabolic specificity, rather than flexibility, governs the anaerobic digestion (AD) ecosystem. This study provides new insights into interspecies electron transfer in the AD process, highlighting a segregation in the metabolism of H<sub>2</sub> and formate. Our findings show that H<sub>2</sub> acts as the primary electron sink for recycling redox cofactors, including NAD<sup>+</sup> and oxidised ferredoxin (Fd<sub>ox</sub>), during primary fermentation, while formate is the dominant electron carrier in secondary fermentation, especially under conditions with elevated H<sub>2</sub> concentrations. Importantly, no evidence of biochemical interconversion between H<sub>2</sub> and formate was identified in the primary fermenting bacteria or in syntrophs enriched in this study. This segregation of H<sub>2</sub> and formate metabolism likely benefits the anaerobic oxidation of butyrate and propionate with a higher tolerance to H<sub>2</sub> accumulation. Moreover, this study highlights the functional partitioning among microbial populations in key AD niches: primary fermentation, secondary fermentation (syntrophic acetogenesis), hydrogenotrophic methanogenesis, and acetoclastic methanogenesis. Genome-centric analysis of the AD microbiome identified several key functional gene clusters, which could enhance genome-centric genotype–phenotype correlations, particularly for strict anaerobes that are difficult to isolate and characterise in pure culture.</p>\\n </div>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70091\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70091","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

一项联合富集实验和以基因组为中心的元组学分析表明,控制厌氧消化(AD)生态系统的是代谢特异性,而不是灵活性。这项研究为AD过程中的种间电子转移提供了新的见解,突出了H2和甲酸代谢的分离。我们的研究结果表明,在初级发酵过程中,H2是回收氧化还原辅助因子(包括NAD+和氧化铁氧还蛋白(Fdox))的主要电子sink,而甲酸盐是次级发酵中主要的电子载体,特别是在H2浓度升高的条件下。重要的是,在本研究中富集的初级发酵细菌或syntrophs中没有发现H2和甲酸之间的生化相互转化的证据。这种H2和甲酸盐代谢的分离可能有利于丁酸盐和丙酸盐的厌氧氧化,对H2积累具有更高的耐受性。此外,本研究还强调了AD关键生态位微生物种群之间的功能划分:初级发酵、次级发酵(合营养产甲烷)、氢营养产甲烷和醋酸裂解产甲烷。以基因组为中心的AD微生物组分析确定了几个关键的功能基因簇,这可以增强以基因组为中心的基因型-表型相关性,特别是对于难以在纯培养中分离和表征的严格厌氧菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metabolic Segregation and Functional Gene Clusters in Anaerobic Digestion Consortia

Metabolic Segregation and Functional Gene Clusters in Anaerobic Digestion Consortia

A combined enrichment experiment and genome-centric meta-omics analysis demonstrated that metabolic specificity, rather than flexibility, governs the anaerobic digestion (AD) ecosystem. This study provides new insights into interspecies electron transfer in the AD process, highlighting a segregation in the metabolism of H2 and formate. Our findings show that H2 acts as the primary electron sink for recycling redox cofactors, including NAD+ and oxidised ferredoxin (Fdox), during primary fermentation, while formate is the dominant electron carrier in secondary fermentation, especially under conditions with elevated H2 concentrations. Importantly, no evidence of biochemical interconversion between H2 and formate was identified in the primary fermenting bacteria or in syntrophs enriched in this study. This segregation of H2 and formate metabolism likely benefits the anaerobic oxidation of butyrate and propionate with a higher tolerance to H2 accumulation. Moreover, this study highlights the functional partitioning among microbial populations in key AD niches: primary fermentation, secondary fermentation (syntrophic acetogenesis), hydrogenotrophic methanogenesis, and acetoclastic methanogenesis. Genome-centric analysis of the AD microbiome identified several key functional gene clusters, which could enhance genome-centric genotype–phenotype correlations, particularly for strict anaerobes that are difficult to isolate and characterise in pure culture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信