Bongnam Jung, Hitomi Yagi, Andrew Kuo, Tim F. Dorweiler, Masanori Aikawa, Taku Kasai, Sasha A. Singh, Andrew J. Dannenberg, Zhongjie Fu, Colin Niaudet, Lois E. H. Smith, Timothy Hla
{"title":"apom结合的S1P通过内皮细胞S1PR1抑制脉络膜新生血管和血管渗漏","authors":"Bongnam Jung, Hitomi Yagi, Andrew Kuo, Tim F. Dorweiler, Masanori Aikawa, Taku Kasai, Sasha A. Singh, Andrew J. Dannenberg, Zhongjie Fu, Colin Niaudet, Lois E. H. Smith, Timothy Hla","doi":"10.1007/s10456-025-09975-7","DOIUrl":null,"url":null,"abstract":"<div><p>Neovascular age-related macular degeneration (nAMD) is a major cause of vision loss worldwide. Current standard of care is repetitive intraocular injections of vascular endothelial growth factor (VEGF) inhibitors, although responses may be partial and non-durable. We report that circulating sphingosine 1-phosphate (S1P) carried by apolipoprotein M (ApoM) acts through the endothelial S1P receptor 1 (S1PR1) to suppress choroidal neovascularization (CNV) in mouse laser-induced CNV, modeling nAMD. In humans, low plasma ApoM levels were associated with increased choroidal and retinal pathology. Additionally, endothelial <i>S1pr1</i> knockout and overexpressing transgenic mice showed increased and reduced CNV lesion size, respectively. Systemic administration of ApoM-Fc, an engineered S1P chaperone protein, not only attenuated CNV to an equivalent degree as anti-VEGF antibody treatment but also suppressed pathological vascular leakage. We suggest that modulating circulating ApoM-bound S1P action on endothelial S1PR1 provides a novel therapeutic strategy to treat nAMD.</p></div>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"28 2","pages":""},"PeriodicalIF":9.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10456-025-09975-7.pdf","citationCount":"0","resultStr":"{\"title\":\"ApoM-bound S1P acts via endothelial S1PR1 to suppress choroidal neovascularization and vascular leakage\",\"authors\":\"Bongnam Jung, Hitomi Yagi, Andrew Kuo, Tim F. Dorweiler, Masanori Aikawa, Taku Kasai, Sasha A. Singh, Andrew J. Dannenberg, Zhongjie Fu, Colin Niaudet, Lois E. H. Smith, Timothy Hla\",\"doi\":\"10.1007/s10456-025-09975-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neovascular age-related macular degeneration (nAMD) is a major cause of vision loss worldwide. Current standard of care is repetitive intraocular injections of vascular endothelial growth factor (VEGF) inhibitors, although responses may be partial and non-durable. We report that circulating sphingosine 1-phosphate (S1P) carried by apolipoprotein M (ApoM) acts through the endothelial S1P receptor 1 (S1PR1) to suppress choroidal neovascularization (CNV) in mouse laser-induced CNV, modeling nAMD. In humans, low plasma ApoM levels were associated with increased choroidal and retinal pathology. Additionally, endothelial <i>S1pr1</i> knockout and overexpressing transgenic mice showed increased and reduced CNV lesion size, respectively. Systemic administration of ApoM-Fc, an engineered S1P chaperone protein, not only attenuated CNV to an equivalent degree as anti-VEGF antibody treatment but also suppressed pathological vascular leakage. We suggest that modulating circulating ApoM-bound S1P action on endothelial S1PR1 provides a novel therapeutic strategy to treat nAMD.</p></div>\",\"PeriodicalId\":7886,\"journal\":{\"name\":\"Angiogenesis\",\"volume\":\"28 2\",\"pages\":\"\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10456-025-09975-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angiogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10456-025-09975-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s10456-025-09975-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
ApoM-bound S1P acts via endothelial S1PR1 to suppress choroidal neovascularization and vascular leakage
Neovascular age-related macular degeneration (nAMD) is a major cause of vision loss worldwide. Current standard of care is repetitive intraocular injections of vascular endothelial growth factor (VEGF) inhibitors, although responses may be partial and non-durable. We report that circulating sphingosine 1-phosphate (S1P) carried by apolipoprotein M (ApoM) acts through the endothelial S1P receptor 1 (S1PR1) to suppress choroidal neovascularization (CNV) in mouse laser-induced CNV, modeling nAMD. In humans, low plasma ApoM levels were associated with increased choroidal and retinal pathology. Additionally, endothelial S1pr1 knockout and overexpressing transgenic mice showed increased and reduced CNV lesion size, respectively. Systemic administration of ApoM-Fc, an engineered S1P chaperone protein, not only attenuated CNV to an equivalent degree as anti-VEGF antibody treatment but also suppressed pathological vascular leakage. We suggest that modulating circulating ApoM-bound S1P action on endothelial S1PR1 provides a novel therapeutic strategy to treat nAMD.
期刊介绍:
Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.