Andrea Campostrini, Agustí Sala-Luis, Pilar Bosch-Roig, Elena Ghedini, Michela Signoretto, Federica Menegazzo
{"title":"介孔二氧化硅和植物提取物相结合,作为可持续的石材遗产保护,防止生物变质","authors":"Andrea Campostrini, Agustí Sala-Luis, Pilar Bosch-Roig, Elena Ghedini, Michela Signoretto, Federica Menegazzo","doi":"10.1007/s00253-025-13475-5","DOIUrl":null,"url":null,"abstract":"<p>Since biodeterioration is considered one of the main issues related to the conservation of cultural heritage stone materials, an investigation was conducted into preventive sustainable antimicrobial alternatives to protect the stone surfaces. The study focuses on using MCM-41 mesoporous silica particles and vegetal extracts: the mesoporous materials act as nanocontainers encapsulating the extracts, which instead serve as green antimicrobic compounds to inhibit microbiological proliferation. In this way, the antimicrobial features of the extracts are sustained for a more extended period, reducing the evaporation rate and diminishing the quantity required; the amount necessary to achieve the minimum inhibitory concentration was reduced due to the decrease in evaporation. Moreover, since the MCM-41 can host a higher quantity of product than is necessary to exert the antimicrobial effect, the duration of activity is further prolonged, releasing the extracts over time. Specifically, the mesoporous particles were impregnated with the vegetal extract of limonene and the essential oils of thyme and oregano. In vitro microbiological tests were conducted on two fungi (i.e., <i>Aspergillus tubingensis</i> and <i>Penicillium chrysogenum</i>), taken as model microorganisms from real-case scenarios. A combination of mesoporous silica and vegetal extracts was employed to develop a protective coating for stone surfaces, and tests were conducted on marble mock-ups. The promising synergic results show that this system could be of interest for preventing microbiological growth over stone surfaces, avoiding a visible aesthetic impact, being non-toxic for the environment or the operator, and preventing the extract from evaporating but holding it for a controlled release.</p><p>• <i>Green antimicrobial system using porous silica as nanocontainer for plant extracts</i></p><p>• <i>Encapsulated vegetal extracts to inhibit microbial growth on stone surfaces</i></p><p>• <i>Stable and efficient coating against fungal species in vitro and on marble mock-up</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13475-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Mesoporous silica and vegetal extracts combined as sustainable stone heritage protection against biodeterioration\",\"authors\":\"Andrea Campostrini, Agustí Sala-Luis, Pilar Bosch-Roig, Elena Ghedini, Michela Signoretto, Federica Menegazzo\",\"doi\":\"10.1007/s00253-025-13475-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since biodeterioration is considered one of the main issues related to the conservation of cultural heritage stone materials, an investigation was conducted into preventive sustainable antimicrobial alternatives to protect the stone surfaces. The study focuses on using MCM-41 mesoporous silica particles and vegetal extracts: the mesoporous materials act as nanocontainers encapsulating the extracts, which instead serve as green antimicrobic compounds to inhibit microbiological proliferation. In this way, the antimicrobial features of the extracts are sustained for a more extended period, reducing the evaporation rate and diminishing the quantity required; the amount necessary to achieve the minimum inhibitory concentration was reduced due to the decrease in evaporation. Moreover, since the MCM-41 can host a higher quantity of product than is necessary to exert the antimicrobial effect, the duration of activity is further prolonged, releasing the extracts over time. Specifically, the mesoporous particles were impregnated with the vegetal extract of limonene and the essential oils of thyme and oregano. In vitro microbiological tests were conducted on two fungi (i.e., <i>Aspergillus tubingensis</i> and <i>Penicillium chrysogenum</i>), taken as model microorganisms from real-case scenarios. A combination of mesoporous silica and vegetal extracts was employed to develop a protective coating for stone surfaces, and tests were conducted on marble mock-ups. The promising synergic results show that this system could be of interest for preventing microbiological growth over stone surfaces, avoiding a visible aesthetic impact, being non-toxic for the environment or the operator, and preventing the extract from evaporating but holding it for a controlled release.</p><p>• <i>Green antimicrobial system using porous silica as nanocontainer for plant extracts</i></p><p>• <i>Encapsulated vegetal extracts to inhibit microbial growth on stone surfaces</i></p><p>• <i>Stable and efficient coating against fungal species in vitro and on marble mock-up</i></p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00253-025-13475-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00253-025-13475-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13475-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Mesoporous silica and vegetal extracts combined as sustainable stone heritage protection against biodeterioration
Since biodeterioration is considered one of the main issues related to the conservation of cultural heritage stone materials, an investigation was conducted into preventive sustainable antimicrobial alternatives to protect the stone surfaces. The study focuses on using MCM-41 mesoporous silica particles and vegetal extracts: the mesoporous materials act as nanocontainers encapsulating the extracts, which instead serve as green antimicrobic compounds to inhibit microbiological proliferation. In this way, the antimicrobial features of the extracts are sustained for a more extended period, reducing the evaporation rate and diminishing the quantity required; the amount necessary to achieve the minimum inhibitory concentration was reduced due to the decrease in evaporation. Moreover, since the MCM-41 can host a higher quantity of product than is necessary to exert the antimicrobial effect, the duration of activity is further prolonged, releasing the extracts over time. Specifically, the mesoporous particles were impregnated with the vegetal extract of limonene and the essential oils of thyme and oregano. In vitro microbiological tests were conducted on two fungi (i.e., Aspergillus tubingensis and Penicillium chrysogenum), taken as model microorganisms from real-case scenarios. A combination of mesoporous silica and vegetal extracts was employed to develop a protective coating for stone surfaces, and tests were conducted on marble mock-ups. The promising synergic results show that this system could be of interest for preventing microbiological growth over stone surfaces, avoiding a visible aesthetic impact, being non-toxic for the environment or the operator, and preventing the extract from evaporating but holding it for a controlled release.
• Green antimicrobial system using porous silica as nanocontainer for plant extracts
• Encapsulated vegetal extracts to inhibit microbial growth on stone surfaces
• Stable and efficient coating against fungal species in vitro and on marble mock-up
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.