聚合物辅助在 Co3O4 上原位生长 Cs3Sb2Br9,促进无牺牲剂光催化二氧化碳还原

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ke Su, Su-Xian Yuan, You-Xiang Feng, Guang-Xing Dong, Yan-Fei Mu, Min Zhang, Tong-Bu Lu
{"title":"聚合物辅助在 Co3O4 上原位生长 Cs3Sb2Br9,促进无牺牲剂光催化二氧化碳还原","authors":"Ke Su,&nbsp;Su-Xian Yuan,&nbsp;You-Xiang Feng,&nbsp;Guang-Xing Dong,&nbsp;Yan-Fei Mu,&nbsp;Min Zhang,&nbsp;Tong-Bu Lu","doi":"10.1007/s12598-024-02968-3","DOIUrl":null,"url":null,"abstract":"<div><p>Halide perovskite-based heterojunctions have emerged as promising candidates for solar energy conversion and storage due to their unique photophysical properties. However, the current bottleneck lies in the insufficient separation of photogenerated carriers at the interface, primarily due to challenges in the controllable growth of perovskite on the substrate. Herein, we present a growth strategy for depositing lead-free Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> perovskite nanocrystals onto the surface of Co<sub>3</sub>O<sub>4</sub> with the assistance of polyacrylic acid (PAA), generating a step-scheme (S-scheme) heterojunction denoted as Co<sub>3</sub>O<sub>4</sub>–Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>. The utilization of PAA as a template can effectively regulate the nucleation and growth of Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>, thereby significantly enhancing the charge separation efficiency of the Co<sub>3</sub>O<sub>4</sub>–Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> heterojunction compared to its counterpart formed without PAA assistance. Under simulated solar light irradiation (100 mW·cm<sup>−2</sup>), the cerium-doped Co<sub>3</sub>O<sub>4</sub>–Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> heterojunction exhibits excellent photocatalytic CO<sub>2</sub> reduction activity without the need for any sacrificial agent. Specifically, the CO yield reaches up to 700.7 μmol·g<sup>−1</sup>·h<sup>−1</sup>, marking a 2.8-fold increase over the sample synthesized without PAA mediation. This polymer-assisted in-situ growth strategy should open up a new avenue for designing and developing more efficient photocatalytic materials based on halide perovskites.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 5","pages":"3194 - 3205"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer-assisted in-situ growth of Cs3Sb2Br9 on Co3O4 to boost sacrificial-agent-free photocatalytic CO2 reduction\",\"authors\":\"Ke Su,&nbsp;Su-Xian Yuan,&nbsp;You-Xiang Feng,&nbsp;Guang-Xing Dong,&nbsp;Yan-Fei Mu,&nbsp;Min Zhang,&nbsp;Tong-Bu Lu\",\"doi\":\"10.1007/s12598-024-02968-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Halide perovskite-based heterojunctions have emerged as promising candidates for solar energy conversion and storage due to their unique photophysical properties. However, the current bottleneck lies in the insufficient separation of photogenerated carriers at the interface, primarily due to challenges in the controllable growth of perovskite on the substrate. Herein, we present a growth strategy for depositing lead-free Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> perovskite nanocrystals onto the surface of Co<sub>3</sub>O<sub>4</sub> with the assistance of polyacrylic acid (PAA), generating a step-scheme (S-scheme) heterojunction denoted as Co<sub>3</sub>O<sub>4</sub>–Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>. The utilization of PAA as a template can effectively regulate the nucleation and growth of Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>, thereby significantly enhancing the charge separation efficiency of the Co<sub>3</sub>O<sub>4</sub>–Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> heterojunction compared to its counterpart formed without PAA assistance. Under simulated solar light irradiation (100 mW·cm<sup>−2</sup>), the cerium-doped Co<sub>3</sub>O<sub>4</sub>–Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub> heterojunction exhibits excellent photocatalytic CO<sub>2</sub> reduction activity without the need for any sacrificial agent. Specifically, the CO yield reaches up to 700.7 μmol·g<sup>−1</sup>·h<sup>−1</sup>, marking a 2.8-fold increase over the sample synthesized without PAA mediation. This polymer-assisted in-situ growth strategy should open up a new avenue for designing and developing more efficient photocatalytic materials based on halide perovskites.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 5\",\"pages\":\"3194 - 3205\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-02968-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02968-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卤化物钙钛矿基异质结由于其独特的光物理性质而成为太阳能转换和存储的有希望的候选者。然而,目前的瓶颈在于光生载流子在界面处的分离不足,这主要是由于钙钛矿在衬底上的可控生长所面临的挑战。在此,我们提出了一种在聚丙烯酸(PAA)的帮助下在Co3O4表面沉积无铅Cs3Sb2Br9钙钛矿纳米晶体的生长策略,生成了一个阶梯状(S-scheme)异质结,称为Co3O4 - Cs3Sb2Br9。利用PAA作为模板可以有效地调控Cs3Sb2Br9的成核和生长,从而显著提高Co3O4-Cs3Sb2Br9异质结的电荷分离效率。在模拟太阳光照(100 mW·cm−2)下,掺杂铈的Co3O4-Cs3Sb2Br9异质结在不需要任何牺牲剂的情况下表现出优异的光催化CO2还原活性。其中,CO产率高达700.7 μmol·g−1·h−1,比未添加PAA的样品提高了2.8倍。这种聚合物辅助原位生长策略为设计和开发基于卤化物钙钛矿的更高效的光催化材料开辟了新的途径。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polymer-assisted in-situ growth of Cs3Sb2Br9 on Co3O4 to boost sacrificial-agent-free photocatalytic CO2 reduction

Halide perovskite-based heterojunctions have emerged as promising candidates for solar energy conversion and storage due to their unique photophysical properties. However, the current bottleneck lies in the insufficient separation of photogenerated carriers at the interface, primarily due to challenges in the controllable growth of perovskite on the substrate. Herein, we present a growth strategy for depositing lead-free Cs3Sb2Br9 perovskite nanocrystals onto the surface of Co3O4 with the assistance of polyacrylic acid (PAA), generating a step-scheme (S-scheme) heterojunction denoted as Co3O4–Cs3Sb2Br9. The utilization of PAA as a template can effectively regulate the nucleation and growth of Cs3Sb2Br9, thereby significantly enhancing the charge separation efficiency of the Co3O4–Cs3Sb2Br9 heterojunction compared to its counterpart formed without PAA assistance. Under simulated solar light irradiation (100 mW·cm−2), the cerium-doped Co3O4–Cs3Sb2Br9 heterojunction exhibits excellent photocatalytic CO2 reduction activity without the need for any sacrificial agent. Specifically, the CO yield reaches up to 700.7 μmol·g−1·h−1, marking a 2.8-fold increase over the sample synthesized without PAA mediation. This polymer-assisted in-situ growth strategy should open up a new avenue for designing and developing more efficient photocatalytic materials based on halide perovskites.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信