{"title":"马氏体分解在 3D 打印 Ti-6Al-4V 中实现双层微结构中的作用","authors":"Roghayeh Mohammadzadeh, Mohammadreza Vahedi, Abhishek Ghosh, Ajay Kumar Mahanta, Akbar Heidarzadeh","doi":"10.1007/s43452-025-01186-7","DOIUrl":null,"url":null,"abstract":"<div><p>To obtain bi-lamellar microstructure, the Ti-6Al-4V alloy samples were produced using laser powder bed fusion and subsequently subjected to annealing heat treatment within the α + β region. The influence of annealing temperature (910°C, 960°C, 990°C), annealing time (0.5h and 4 h), and cooling rate (air, oil, and water quench) on the microstructure evolution, yield strength, ultimate tensile strength, and ductility at room temperature were examined. It was found that annealing at 910°C for 0.5 h with air cooling initiated the decomposition of initial martensite and the formation of β-transformed regions and secondary-α lamellas, while annealing at 990°C resulted in the creation of equiaxed grains with a lamellar microstructure. FESEM analysis revealed the presence of β-nano-precipitates in the meta-stable primary α phase in all annealed samples. Fast cooling in oil and water promoted the retention of a higher fraction of β nano-precipitates and suppressed the formation of secondary-α lamellas. The results showed that extending the annealing time to 4 h at 910°C was not sufficient to achieve achieving complete martensite decomposition. Notably, the decomposed martensite microstructure exhibited unfavorable characteristics in contrast to that of its as-built state.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of martensite decomposition for achieving bi-lamellar microstructure in 3D printed Ti-6Al-4V\",\"authors\":\"Roghayeh Mohammadzadeh, Mohammadreza Vahedi, Abhishek Ghosh, Ajay Kumar Mahanta, Akbar Heidarzadeh\",\"doi\":\"10.1007/s43452-025-01186-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To obtain bi-lamellar microstructure, the Ti-6Al-4V alloy samples were produced using laser powder bed fusion and subsequently subjected to annealing heat treatment within the α + β region. The influence of annealing temperature (910°C, 960°C, 990°C), annealing time (0.5h and 4 h), and cooling rate (air, oil, and water quench) on the microstructure evolution, yield strength, ultimate tensile strength, and ductility at room temperature were examined. It was found that annealing at 910°C for 0.5 h with air cooling initiated the decomposition of initial martensite and the formation of β-transformed regions and secondary-α lamellas, while annealing at 990°C resulted in the creation of equiaxed grains with a lamellar microstructure. FESEM analysis revealed the presence of β-nano-precipitates in the meta-stable primary α phase in all annealed samples. Fast cooling in oil and water promoted the retention of a higher fraction of β nano-precipitates and suppressed the formation of secondary-α lamellas. The results showed that extending the annealing time to 4 h at 910°C was not sufficient to achieve achieving complete martensite decomposition. Notably, the decomposed martensite microstructure exhibited unfavorable characteristics in contrast to that of its as-built state.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-025-01186-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01186-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Role of martensite decomposition for achieving bi-lamellar microstructure in 3D printed Ti-6Al-4V
To obtain bi-lamellar microstructure, the Ti-6Al-4V alloy samples were produced using laser powder bed fusion and subsequently subjected to annealing heat treatment within the α + β region. The influence of annealing temperature (910°C, 960°C, 990°C), annealing time (0.5h and 4 h), and cooling rate (air, oil, and water quench) on the microstructure evolution, yield strength, ultimate tensile strength, and ductility at room temperature were examined. It was found that annealing at 910°C for 0.5 h with air cooling initiated the decomposition of initial martensite and the formation of β-transformed regions and secondary-α lamellas, while annealing at 990°C resulted in the creation of equiaxed grains with a lamellar microstructure. FESEM analysis revealed the presence of β-nano-precipitates in the meta-stable primary α phase in all annealed samples. Fast cooling in oil and water promoted the retention of a higher fraction of β nano-precipitates and suppressed the formation of secondary-α lamellas. The results showed that extending the annealing time to 4 h at 910°C was not sufficient to achieve achieving complete martensite decomposition. Notably, the decomposed martensite microstructure exhibited unfavorable characteristics in contrast to that of its as-built state.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.