超导量子处理器上模拟误差降低的量子比特高效变分量子特征解算器的实验实现

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yuwei Ma, Weiting Wang, Xianghao Mu, Weizhou Cai, Ziyue Hua, Xiaoxuan Pan, Dong-Ling Deng, Rebing Wu, Chang-Ling Zou, Lei Wang, Luyan Sun
{"title":"超导量子处理器上模拟误差降低的量子比特高效变分量子特征解算器的实验实现","authors":"Yuwei Ma,&nbsp;Weiting Wang,&nbsp;Xianghao Mu,&nbsp;Weizhou Cai,&nbsp;Ziyue Hua,&nbsp;Xiaoxuan Pan,&nbsp;Dong-Ling Deng,&nbsp;Rebing Wu,&nbsp;Chang-Ling Zou,&nbsp;Lei Wang,&nbsp;Luyan Sun","doi":"10.1007/s11433-025-2620-6","DOIUrl":null,"url":null,"abstract":"<div><p>We experimentally demonstrate a qubit-efficient variational quantum eigensolver (VQE) algorithm using a superconducting quantum processor, employing minimal quantum resources with only a transmon qubit coupled to a high-coherence photonic qubit. By leveraging matrix product states to compress the quantum state representation, we simulate an <i>N</i> + 1-spin circular Ising model with a transverse field. Furthermore, we develop an analog error mitigation approach through zero-noise extrapolation by introducing a precise noise injection technique for the transmon qubit. As a validation, we apply our error-mitigated qubit-efficient VQE in determining the ground state energies of a 4-spin Ising model. Our results demonstrate the feasibility of performing quantum algorithms with minimal quantum resources while effectively mitigating the impact of noise, offering a promising pathway to bridge the gap between theoretical advances and practical implementations on current noisy intermediate-scale quantum devices.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 7","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental implementation of a qubit-efficient variational quantum eigensolver with analog error mitigation on a superconducting quantum processor\",\"authors\":\"Yuwei Ma,&nbsp;Weiting Wang,&nbsp;Xianghao Mu,&nbsp;Weizhou Cai,&nbsp;Ziyue Hua,&nbsp;Xiaoxuan Pan,&nbsp;Dong-Ling Deng,&nbsp;Rebing Wu,&nbsp;Chang-Ling Zou,&nbsp;Lei Wang,&nbsp;Luyan Sun\",\"doi\":\"10.1007/s11433-025-2620-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We experimentally demonstrate a qubit-efficient variational quantum eigensolver (VQE) algorithm using a superconducting quantum processor, employing minimal quantum resources with only a transmon qubit coupled to a high-coherence photonic qubit. By leveraging matrix product states to compress the quantum state representation, we simulate an <i>N</i> + 1-spin circular Ising model with a transverse field. Furthermore, we develop an analog error mitigation approach through zero-noise extrapolation by introducing a precise noise injection technique for the transmon qubit. As a validation, we apply our error-mitigated qubit-efficient VQE in determining the ground state energies of a 4-spin Ising model. Our results demonstrate the feasibility of performing quantum algorithms with minimal quantum resources while effectively mitigating the impact of noise, offering a promising pathway to bridge the gap between theoretical advances and practical implementations on current noisy intermediate-scale quantum devices.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 7\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-025-2620-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2620-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们通过实验证明了一种量子比特高效变分量子特征求解(VQE)算法,该算法使用超导量子处理器,使用最小的量子资源,只有一个transmon量子比特与一个高相干光子量子比特耦合。通过利用矩阵积态来压缩量子态表示,我们模拟了一个具有横向场的N + 1自旋圆形Ising模型。此外,我们通过零噪声外推开发了一种模拟误差缓解方法,通过为transmon量子位引入精确的噪声注入技术。作为验证,我们应用我们的错误减轻量子位效率VQE来确定4自旋Ising模型的基态能量。我们的研究结果证明了用最少的量子资源执行量子算法的可行性,同时有效地减轻了噪声的影响,为弥合当前噪声中等规模量子器件的理论进展和实际实现之间的差距提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental implementation of a qubit-efficient variational quantum eigensolver with analog error mitigation on a superconducting quantum processor

We experimentally demonstrate a qubit-efficient variational quantum eigensolver (VQE) algorithm using a superconducting quantum processor, employing minimal quantum resources with only a transmon qubit coupled to a high-coherence photonic qubit. By leveraging matrix product states to compress the quantum state representation, we simulate an N + 1-spin circular Ising model with a transverse field. Furthermore, we develop an analog error mitigation approach through zero-noise extrapolation by introducing a precise noise injection technique for the transmon qubit. As a validation, we apply our error-mitigated qubit-efficient VQE in determining the ground state energies of a 4-spin Ising model. Our results demonstrate the feasibility of performing quantum algorithms with minimal quantum resources while effectively mitigating the impact of noise, offering a promising pathway to bridge the gap between theoretical advances and practical implementations on current noisy intermediate-scale quantum devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信