{"title":"光子纤维液晶弹性体致动器","authors":"Yun-Long Li, Kai Liu, Hui-Min Wu, Jiu-An Lv","doi":"10.1007/s10118-025-3286-x","DOIUrl":null,"url":null,"abstract":"<div><p>Photonic fibrous soft actuators that can modulate light and produce responsive deformation would have broad technological implications in areas, ranging from smart textiles and intelligent artificial muscles to medical devices. However, creating such multifunctional soft actuators has proved tremendously challenging. Here, we report novel cholesteric liquid crystal elastomer (CLCE) based photonic fibrous soft actuators (PFSAs). CLCE can serve as chiral photonic soft active material and allow for multiresponse in shapes and colors. We leveraged a tubular-mold-based processing technology to prepare fibrous CLCE actuators, and the prepared actuators exhibit the capabilities to dynamically switch structural colors and geometrical shapes by mechanical, temperature, or light stimuli. CLCE-based PFSAs demonstrate diverse functionalities, including visual weight feedback, optically driven object manipulation, and light driven locomotion. It is anticipated that our PFSAs would offer many new possibilities for developing advanced soft actuators.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 4","pages":"597 - 604"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic Fibrous Liquid Crystal Elastomer Actuators\",\"authors\":\"Yun-Long Li, Kai Liu, Hui-Min Wu, Jiu-An Lv\",\"doi\":\"10.1007/s10118-025-3286-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photonic fibrous soft actuators that can modulate light and produce responsive deformation would have broad technological implications in areas, ranging from smart textiles and intelligent artificial muscles to medical devices. However, creating such multifunctional soft actuators has proved tremendously challenging. Here, we report novel cholesteric liquid crystal elastomer (CLCE) based photonic fibrous soft actuators (PFSAs). CLCE can serve as chiral photonic soft active material and allow for multiresponse in shapes and colors. We leveraged a tubular-mold-based processing technology to prepare fibrous CLCE actuators, and the prepared actuators exhibit the capabilities to dynamically switch structural colors and geometrical shapes by mechanical, temperature, or light stimuli. CLCE-based PFSAs demonstrate diverse functionalities, including visual weight feedback, optically driven object manipulation, and light driven locomotion. It is anticipated that our PFSAs would offer many new possibilities for developing advanced soft actuators.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"43 4\",\"pages\":\"597 - 604\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-025-3286-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3286-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Photonic fibrous soft actuators that can modulate light and produce responsive deformation would have broad technological implications in areas, ranging from smart textiles and intelligent artificial muscles to medical devices. However, creating such multifunctional soft actuators has proved tremendously challenging. Here, we report novel cholesteric liquid crystal elastomer (CLCE) based photonic fibrous soft actuators (PFSAs). CLCE can serve as chiral photonic soft active material and allow for multiresponse in shapes and colors. We leveraged a tubular-mold-based processing technology to prepare fibrous CLCE actuators, and the prepared actuators exhibit the capabilities to dynamically switch structural colors and geometrical shapes by mechanical, temperature, or light stimuli. CLCE-based PFSAs demonstrate diverse functionalities, including visual weight feedback, optically driven object manipulation, and light driven locomotion. It is anticipated that our PFSAs would offer many new possibilities for developing advanced soft actuators.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.