Yaru Liu, Yang Li, Hao Gong, Yao Liu, Yijie Wang, Cuiping Ma, Yuxi Wei, Chao Shi
{"title":"一种基于电势辅助和三元杂交的快速,特异性和简单易用的生物传感器,用于无扩增的microRNA测定","authors":"Yaru Liu, Yang Li, Hao Gong, Yao Liu, Yijie Wang, Cuiping Ma, Yuxi Wei, Chao Shi","doi":"10.1007/s00604-025-07143-8","DOIUrl":null,"url":null,"abstract":"<div><p> An ultra-fast, easy-to-use and non-amplification electrochemical detection platform was constructed for microRNA (miRNA) detection. A set of label-free hairpin probes and capture probes were introduced to form a ternary complex, which could enhance the selectivity and stability of miRNA detection due to the ability of reducing non-specific bind with non-target and enhancing accessibility of target to probes. Moreover, the capture probe immobilization and hybridization process were accelerated by the external electric field, shortening the detection time from 2 h to 5 min. The platform showed a detection limit of 1.28 fM under ideal experimental control conditions and had ability to identify 1- or 2-nucleotide (nt) difference. In addition, the designed sensor achieved the sensitive determination of miRNA-21 in serum samples. The excellent anti-interference capability of this detection method indicated its potential for clinical application. Its simplicity and high specificity made this method a promising tool for detecting different miRNA to assist the diagnosis of diverse cancers.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 5","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rapid, specific, and simple-to-use biosensor for amplification-free determination of microRNA based on electrical potential-assisted and ternary hybridization\",\"authors\":\"Yaru Liu, Yang Li, Hao Gong, Yao Liu, Yijie Wang, Cuiping Ma, Yuxi Wei, Chao Shi\",\"doi\":\"10.1007/s00604-025-07143-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p> An ultra-fast, easy-to-use and non-amplification electrochemical detection platform was constructed for microRNA (miRNA) detection. A set of label-free hairpin probes and capture probes were introduced to form a ternary complex, which could enhance the selectivity and stability of miRNA detection due to the ability of reducing non-specific bind with non-target and enhancing accessibility of target to probes. Moreover, the capture probe immobilization and hybridization process were accelerated by the external electric field, shortening the detection time from 2 h to 5 min. The platform showed a detection limit of 1.28 fM under ideal experimental control conditions and had ability to identify 1- or 2-nucleotide (nt) difference. In addition, the designed sensor achieved the sensitive determination of miRNA-21 in serum samples. The excellent anti-interference capability of this detection method indicated its potential for clinical application. Its simplicity and high specificity made this method a promising tool for detecting different miRNA to assist the diagnosis of diverse cancers.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 5\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-025-07143-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07143-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A rapid, specific, and simple-to-use biosensor for amplification-free determination of microRNA based on electrical potential-assisted and ternary hybridization
An ultra-fast, easy-to-use and non-amplification electrochemical detection platform was constructed for microRNA (miRNA) detection. A set of label-free hairpin probes and capture probes were introduced to form a ternary complex, which could enhance the selectivity and stability of miRNA detection due to the ability of reducing non-specific bind with non-target and enhancing accessibility of target to probes. Moreover, the capture probe immobilization and hybridization process were accelerated by the external electric field, shortening the detection time from 2 h to 5 min. The platform showed a detection limit of 1.28 fM under ideal experimental control conditions and had ability to identify 1- or 2-nucleotide (nt) difference. In addition, the designed sensor achieved the sensitive determination of miRNA-21 in serum samples. The excellent anti-interference capability of this detection method indicated its potential for clinical application. Its simplicity and high specificity made this method a promising tool for detecting different miRNA to assist the diagnosis of diverse cancers.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.