Neeta Ukirade, Upasana Choudhari, Sunil Bhapkar, Umesh Jadhav, Shweta Jagtap and Sunit Rane
{"title":"酶固定化氧化石墨烯电化学生物传感器用于谷胱甘肽检测","authors":"Neeta Ukirade, Upasana Choudhari, Sunil Bhapkar, Umesh Jadhav, Shweta Jagtap and Sunit Rane","doi":"10.1039/D4RA09033K","DOIUrl":null,"url":null,"abstract":"<p >Glutathione acts as a natural antioxidant in the human body and the reduction of its content is a sign of oxidative stress. In this study, a sensitive electrochemical sensor was developed using laccase enzyme immobilized onto graphene oxide (GO) for detection of glutathione. The surface of the indium tin oxide (ITO) was modified with GO <em>via</em> a drop casting method. Subsequently, laccase was immobilized onto the modified ITO decorated with GO. The modified electrode was characterized using field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FTIR spectra of laccase/GO confirmed the successful immobilization of laccase onto GO sheets. FESEM analysis revealed the transformation from a layered, wrinkled structure to a compact, smooth surface with spherical laccase, confirming successful enzyme integration. Raman analysis confirmed successful laccase immobilization onto GO, as evidenced by structural changes in the D and G bands, highlighting the modification of the material. The cyclic voltammetry measurements revealed that laccase/GO/ITO exhibited better electrocatalytic activity toward oxidation of GSH in acetate buffer solution than the bare ITO electrode. This newly developed electrode exhibited a good response to glutathione with a wide linear range from 1 μM to 100 μM, a limit of detection of 0.89 μM and high sensitivity (6.51 μA μM<small><sup>−1</sup></small>). Furthermore, it exhibited excellent selectivity, repeatability, and long-term stability. The modified electrode was successfully used for the detection of GSH in a real sample, offering satisfactory results.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 17","pages":" 12987-12996"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra09033k?page=search","citationCount":"0","resultStr":"{\"title\":\"Enzyme-immobilized graphene oxide-based electrochemical biosensor for glutathione detection\",\"authors\":\"Neeta Ukirade, Upasana Choudhari, Sunil Bhapkar, Umesh Jadhav, Shweta Jagtap and Sunit Rane\",\"doi\":\"10.1039/D4RA09033K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Glutathione acts as a natural antioxidant in the human body and the reduction of its content is a sign of oxidative stress. In this study, a sensitive electrochemical sensor was developed using laccase enzyme immobilized onto graphene oxide (GO) for detection of glutathione. The surface of the indium tin oxide (ITO) was modified with GO <em>via</em> a drop casting method. Subsequently, laccase was immobilized onto the modified ITO decorated with GO. The modified electrode was characterized using field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FTIR spectra of laccase/GO confirmed the successful immobilization of laccase onto GO sheets. FESEM analysis revealed the transformation from a layered, wrinkled structure to a compact, smooth surface with spherical laccase, confirming successful enzyme integration. Raman analysis confirmed successful laccase immobilization onto GO, as evidenced by structural changes in the D and G bands, highlighting the modification of the material. The cyclic voltammetry measurements revealed that laccase/GO/ITO exhibited better electrocatalytic activity toward oxidation of GSH in acetate buffer solution than the bare ITO electrode. This newly developed electrode exhibited a good response to glutathione with a wide linear range from 1 μM to 100 μM, a limit of detection of 0.89 μM and high sensitivity (6.51 μA μM<small><sup>−1</sup></small>). Furthermore, it exhibited excellent selectivity, repeatability, and long-term stability. The modified electrode was successfully used for the detection of GSH in a real sample, offering satisfactory results.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 17\",\"pages\":\" 12987-12996\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra09033k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra09033k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra09033k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enzyme-immobilized graphene oxide-based electrochemical biosensor for glutathione detection
Glutathione acts as a natural antioxidant in the human body and the reduction of its content is a sign of oxidative stress. In this study, a sensitive electrochemical sensor was developed using laccase enzyme immobilized onto graphene oxide (GO) for detection of glutathione. The surface of the indium tin oxide (ITO) was modified with GO via a drop casting method. Subsequently, laccase was immobilized onto the modified ITO decorated with GO. The modified electrode was characterized using field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FTIR spectra of laccase/GO confirmed the successful immobilization of laccase onto GO sheets. FESEM analysis revealed the transformation from a layered, wrinkled structure to a compact, smooth surface with spherical laccase, confirming successful enzyme integration. Raman analysis confirmed successful laccase immobilization onto GO, as evidenced by structural changes in the D and G bands, highlighting the modification of the material. The cyclic voltammetry measurements revealed that laccase/GO/ITO exhibited better electrocatalytic activity toward oxidation of GSH in acetate buffer solution than the bare ITO electrode. This newly developed electrode exhibited a good response to glutathione with a wide linear range from 1 μM to 100 μM, a limit of detection of 0.89 μM and high sensitivity (6.51 μA μM−1). Furthermore, it exhibited excellent selectivity, repeatability, and long-term stability. The modified electrode was successfully used for the detection of GSH in a real sample, offering satisfactory results.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.