具有高太阳能制氢效率的垂直 B2CSe/Mg(OH)2范德华异质结构的理论研究†...

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Francis Opoku, Eric Selorm Agorku, Samuel Osei-Bonsu Oppong, Edward Ebow Kwaansa-Ansah, Noah Kyame Asare-Donkor and Penny Poomani Govender
{"title":"具有高太阳能制氢效率的垂直 B2CSe/Mg(OH)2范德华异质结构的理论研究†...","authors":"Francis Opoku, Eric Selorm Agorku, Samuel Osei-Bonsu Oppong, Edward Ebow Kwaansa-Ansah, Noah Kyame Asare-Donkor and Penny Poomani Govender","doi":"10.1039/D5NJ00757G","DOIUrl":null,"url":null,"abstract":"<p >The search for efficient and stable photocatalysts for solar-driven water splitting remains a critical challenge in renewable energy research. In this study, the B<small><sub>2</sub></small>CSe/Mg(OH)<small><sub>2</sub></small> van der Waals heterostructure (vdWH) was investigated as a promising candidate using first-principles simulations. The heterostructure demonstrated exceptional thermal, kinetic, and mechanical stability, as confirmed through <em>ab initio</em> molecular dynamics, phonon dispersion, and mechanical property analyses. The B<small><sub>2</sub></small>CSe/Mg(OH)<small><sub>2</sub></small> vdWH exhibited a reduced indirect bandgap compared to the Mg(OH)<small><sub>2</sub></small> monolayer, facilitating efficient photogenerated electron–hole pair separation. A type-II band alignment, supported by charge density difference, electronic structure, and built-in electric field analyses, further enhanced redox capacity and carrier separation efficiency. The heterostructure achieved a remarkable solar-to-hydrogen (STH) conversion efficiency of 34.58%, outperforming many existing systems, and demonstrated strong optical absorption across the visible light spectrum. Strain engineering revealed the potential for adaptive photocatalyst design, with compressive strain inducing a transition from type-II to type-I band alignment and tensile strain effectively redshifting the absorption edge to harness a broader range of solar energy. This tunability allows for precise control over the electronic and optical properties of the heterostructure, enabling optimization for specific photocatalytic applications. A potential drop of 8.06 eV across the interface and a charge transfer of 0.0045 electrons from Mg(OH)<small><sub>2</sub></small> to B<small><sub>2</sub></small>CSe further enhanced the heterostructure's photocatalytic potential. These findings not only highlight the B<small><sub>2</sub></small>CSe/Mg(OH)<small><sub>2</sub></small> vdWH as a highly efficient and stable photocatalyst for overall water splitting but also underscore the transformative role of strain engineering in designing adaptive photocatalysts. This approach offers a promising pathway for advancing solar energy utilization and hydrogen production, paving the way for next-generation renewable energy technologies.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 17","pages":" 7035-7046"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nj/d5nj00757g?page=search","citationCount":"0","resultStr":"{\"title\":\"Theoretical study on vertical B2CSe/Mg(OH)2 van der Waals heterostructures with high solar-to-hydrogen efficiency†\",\"authors\":\"Francis Opoku, Eric Selorm Agorku, Samuel Osei-Bonsu Oppong, Edward Ebow Kwaansa-Ansah, Noah Kyame Asare-Donkor and Penny Poomani Govender\",\"doi\":\"10.1039/D5NJ00757G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The search for efficient and stable photocatalysts for solar-driven water splitting remains a critical challenge in renewable energy research. In this study, the B<small><sub>2</sub></small>CSe/Mg(OH)<small><sub>2</sub></small> van der Waals heterostructure (vdWH) was investigated as a promising candidate using first-principles simulations. The heterostructure demonstrated exceptional thermal, kinetic, and mechanical stability, as confirmed through <em>ab initio</em> molecular dynamics, phonon dispersion, and mechanical property analyses. The B<small><sub>2</sub></small>CSe/Mg(OH)<small><sub>2</sub></small> vdWH exhibited a reduced indirect bandgap compared to the Mg(OH)<small><sub>2</sub></small> monolayer, facilitating efficient photogenerated electron–hole pair separation. A type-II band alignment, supported by charge density difference, electronic structure, and built-in electric field analyses, further enhanced redox capacity and carrier separation efficiency. The heterostructure achieved a remarkable solar-to-hydrogen (STH) conversion efficiency of 34.58%, outperforming many existing systems, and demonstrated strong optical absorption across the visible light spectrum. Strain engineering revealed the potential for adaptive photocatalyst design, with compressive strain inducing a transition from type-II to type-I band alignment and tensile strain effectively redshifting the absorption edge to harness a broader range of solar energy. This tunability allows for precise control over the electronic and optical properties of the heterostructure, enabling optimization for specific photocatalytic applications. A potential drop of 8.06 eV across the interface and a charge transfer of 0.0045 electrons from Mg(OH)<small><sub>2</sub></small> to B<small><sub>2</sub></small>CSe further enhanced the heterostructure's photocatalytic potential. These findings not only highlight the B<small><sub>2</sub></small>CSe/Mg(OH)<small><sub>2</sub></small> vdWH as a highly efficient and stable photocatalyst for overall water splitting but also underscore the transformative role of strain engineering in designing adaptive photocatalysts. This approach offers a promising pathway for advancing solar energy utilization and hydrogen production, paving the way for next-generation renewable energy technologies.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 17\",\"pages\":\" 7035-7046\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/nj/d5nj00757g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00757g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00757g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为太阳能驱动的水分解寻找高效稳定的光催化剂仍然是可再生能源研究中的一个关键挑战。本研究利用第一性原理模拟研究了B2CSe/Mg(OH)2 van der Waals异质结构(vdWH)。通过从头算分子动力学、声子色散和力学性能分析证实,异质结构表现出优异的热、动力学和力学稳定性。与Mg(OH)2单层相比,B2CSe/Mg(OH)2 vdWH具有更小的间接带隙,有利于光电子-空穴对的高效分离。在电荷密度差、电子结构和内置电场分析的支持下,ii型带对准进一步提高了氧化还原能力和载流子分离效率。该异质结构实现了34.58%的太阳能-氢(STH)转换效率,优于许多现有系统,并且在可见光光谱中表现出很强的光吸收。应变工程揭示了自适应光催化剂设计的潜力,压缩应变诱导从ii型到i型波段对准的转变,拉伸应变有效地使吸收边缘红移,以利用更广泛的太阳能。这种可调节性允许对异质结构的电子和光学性质进行精确控制,从而实现特定光催化应用的优化。界面电位下降8.06 eV,从Mg(OH)2向B2CSe转移了0.0045个电荷,进一步增强了异质结构的光催化电位。这些发现不仅突出了B2CSe/Mg(OH)2 vdWH作为一种高效稳定的全水分解光催化剂,而且强调了应变工程在设计自适应光催化剂方面的革命性作用。这种方法为推进太阳能利用和氢气生产提供了一条有希望的途径,为下一代可再生能源技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical study on vertical B2CSe/Mg(OH)2 van der Waals heterostructures with high solar-to-hydrogen efficiency†

Theoretical study on vertical B2CSe/Mg(OH)2 van der Waals heterostructures with high solar-to-hydrogen efficiency†

The search for efficient and stable photocatalysts for solar-driven water splitting remains a critical challenge in renewable energy research. In this study, the B2CSe/Mg(OH)2 van der Waals heterostructure (vdWH) was investigated as a promising candidate using first-principles simulations. The heterostructure demonstrated exceptional thermal, kinetic, and mechanical stability, as confirmed through ab initio molecular dynamics, phonon dispersion, and mechanical property analyses. The B2CSe/Mg(OH)2 vdWH exhibited a reduced indirect bandgap compared to the Mg(OH)2 monolayer, facilitating efficient photogenerated electron–hole pair separation. A type-II band alignment, supported by charge density difference, electronic structure, and built-in electric field analyses, further enhanced redox capacity and carrier separation efficiency. The heterostructure achieved a remarkable solar-to-hydrogen (STH) conversion efficiency of 34.58%, outperforming many existing systems, and demonstrated strong optical absorption across the visible light spectrum. Strain engineering revealed the potential for adaptive photocatalyst design, with compressive strain inducing a transition from type-II to type-I band alignment and tensile strain effectively redshifting the absorption edge to harness a broader range of solar energy. This tunability allows for precise control over the electronic and optical properties of the heterostructure, enabling optimization for specific photocatalytic applications. A potential drop of 8.06 eV across the interface and a charge transfer of 0.0045 electrons from Mg(OH)2 to B2CSe further enhanced the heterostructure's photocatalytic potential. These findings not only highlight the B2CSe/Mg(OH)2 vdWH as a highly efficient and stable photocatalyst for overall water splitting but also underscore the transformative role of strain engineering in designing adaptive photocatalysts. This approach offers a promising pathway for advancing solar energy utilization and hydrogen production, paving the way for next-generation renewable energy technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信