基于风速特征的异常数据识别与重构

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
Mao Yang;Tian Peng;Wei Zhang;Xin Su;Chao Han;Fulin Fan
{"title":"基于风速特征的异常数据识别与重构","authors":"Mao Yang;Tian Peng;Wei Zhang;Xin Su;Chao Han;Fulin Fan","doi":"10.17775/CSEEJPES.2022.06640","DOIUrl":null,"url":null,"abstract":"High availability of wind power data is the basis for wind power research, but there are a large number of abnormal data in actual collected data, which seriously affects analysis of wind power law and reduces prediction accuracy. Measured power data of wind farm are analyzed, influence of wind speed fluctuation characteristics on wind power is discussed, and abnormal points are identified for data of different wind types. The Cluster-Based Local Outlier Factor (CLOF) algorithm based on K-means is used to identify outlier abnormal points, and conditional constraints based on physical background are used to identify accumulation abnormal points. Reconstructed data segment is divided according to fluctuation of wind speed. The Bidirectional Gate Recurrent Unit (BiGRU) model with wind speed as input reconstructs fluctuation segment data, and bi-directional weighted random forest model reconstructs stationary segment data. Based on analysis of measured data of a wind farm, results show the method can effectively identify various abnormal data, and complete high-quality reconstruction of data, thereby improving accuracy of wind power prediction.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"612-622"},"PeriodicalIF":6.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322710","citationCount":"0","resultStr":"{\"title\":\"Abnormal Data Identification and Reconstruction Based on Wind Speed Characteristics\",\"authors\":\"Mao Yang;Tian Peng;Wei Zhang;Xin Su;Chao Han;Fulin Fan\",\"doi\":\"10.17775/CSEEJPES.2022.06640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High availability of wind power data is the basis for wind power research, but there are a large number of abnormal data in actual collected data, which seriously affects analysis of wind power law and reduces prediction accuracy. Measured power data of wind farm are analyzed, influence of wind speed fluctuation characteristics on wind power is discussed, and abnormal points are identified for data of different wind types. The Cluster-Based Local Outlier Factor (CLOF) algorithm based on K-means is used to identify outlier abnormal points, and conditional constraints based on physical background are used to identify accumulation abnormal points. Reconstructed data segment is divided according to fluctuation of wind speed. The Bidirectional Gate Recurrent Unit (BiGRU) model with wind speed as input reconstructs fluctuation segment data, and bi-directional weighted random forest model reconstructs stationary segment data. Based on analysis of measured data of a wind farm, results show the method can effectively identify various abnormal data, and complete high-quality reconstruction of data, thereby improving accuracy of wind power prediction.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"11 2\",\"pages\":\"612-622\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322710\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10322710/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10322710/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

风电数据的高可用性是风电研究的基础,但实际采集数据中存在大量异常数据,严重影响风电规律分析,降低预测精度。对风电场实测功率数据进行了分析,讨论了风速波动特性对风电功率的影响,识别了不同风型数据的异常点。采用基于K-means的聚类局部离群因子(CLOF)算法识别离群异常点,采用基于物理背景的条件约束识别积累异常点。根据风速波动对重构数据段进行划分。以风速为输入的双向门循环单元(BiGRU)模型重构波动段数据,双向加权随机森林模型重构平稳段数据。通过对某风电场实测数据的分析,结果表明,该方法能够有效识别各种异常数据,并完成数据的高质量重建,从而提高了风电预测的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal Data Identification and Reconstruction Based on Wind Speed Characteristics
High availability of wind power data is the basis for wind power research, but there are a large number of abnormal data in actual collected data, which seriously affects analysis of wind power law and reduces prediction accuracy. Measured power data of wind farm are analyzed, influence of wind speed fluctuation characteristics on wind power is discussed, and abnormal points are identified for data of different wind types. The Cluster-Based Local Outlier Factor (CLOF) algorithm based on K-means is used to identify outlier abnormal points, and conditional constraints based on physical background are used to identify accumulation abnormal points. Reconstructed data segment is divided according to fluctuation of wind speed. The Bidirectional Gate Recurrent Unit (BiGRU) model with wind speed as input reconstructs fluctuation segment data, and bi-directional weighted random forest model reconstructs stationary segment data. Based on analysis of measured data of a wind farm, results show the method can effectively identify various abnormal data, and complete high-quality reconstruction of data, thereby improving accuracy of wind power prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信