{"title":"La0.7Ca0.3-xKxMnO3陶瓷的电子结构及输运性能改性研究","authors":"Pratik Lakhani , Paresh Sidhdhapura , Mayur Vala , Tanvi Dudhrejiya , Nirali Udani , Sandhya Dodia , Gaurav Jadav , Pankaj Solanki , Dhananjay Dhruv , Sergei A. Sharko , J.H. Markna , Bharat Kataria","doi":"10.1016/j.physb.2025.417279","DOIUrl":null,"url":null,"abstract":"<div><div>The partial substitution of monovalent alkali metal K<sup>+</sup> at the divalent Ca<sup>2+</sup> site in La<sub>0.7</sub>Ca<sub>0.3</sub>MnO<sub>3</sub> manganites (LCKMO) leads to remarkable structural, electronic, and magnetic modifications. This report combines structural, transport, magneto transport, and X-ray photoelectron spectroscopy (XPS) studies to examine these modifications in LCKMO samples with varying alkali metal content. X-ray diffraction (XRD) confirmed the orthorhombic crystal structure and single-phasic nature, while transport and magnetoresistance studies highlighted the effects of K<sup>+</sup> substitution on the metal-insulator transition temperature (T<sub>P</sub>) and resistivity. X-ray Photoelectron Spectra (XPS) analysis decodes the Mn<sup>3+</sup>/Mn<sup>4+</sup> mixed-valence states, providing insights into the Jahn-Teller (JT) distortions and double-exchange (DE) mechanisms manipulating the observed magnetic behaviour. These findings highlight the carping interplay of structural and electronic modifications in tailoring the functional properties of manganites for potential technological applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"711 ","pages":"Article 417279"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on electronic structure and transport property modifications of La0.7Ca0.3-xKxMnO3 ceramics\",\"authors\":\"Pratik Lakhani , Paresh Sidhdhapura , Mayur Vala , Tanvi Dudhrejiya , Nirali Udani , Sandhya Dodia , Gaurav Jadav , Pankaj Solanki , Dhananjay Dhruv , Sergei A. Sharko , J.H. Markna , Bharat Kataria\",\"doi\":\"10.1016/j.physb.2025.417279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The partial substitution of monovalent alkali metal K<sup>+</sup> at the divalent Ca<sup>2+</sup> site in La<sub>0.7</sub>Ca<sub>0.3</sub>MnO<sub>3</sub> manganites (LCKMO) leads to remarkable structural, electronic, and magnetic modifications. This report combines structural, transport, magneto transport, and X-ray photoelectron spectroscopy (XPS) studies to examine these modifications in LCKMO samples with varying alkali metal content. X-ray diffraction (XRD) confirmed the orthorhombic crystal structure and single-phasic nature, while transport and magnetoresistance studies highlighted the effects of K<sup>+</sup> substitution on the metal-insulator transition temperature (T<sub>P</sub>) and resistivity. X-ray Photoelectron Spectra (XPS) analysis decodes the Mn<sup>3+</sup>/Mn<sup>4+</sup> mixed-valence states, providing insights into the Jahn-Teller (JT) distortions and double-exchange (DE) mechanisms manipulating the observed magnetic behaviour. These findings highlight the carping interplay of structural and electronic modifications in tailoring the functional properties of manganites for potential technological applications.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"711 \",\"pages\":\"Article 417279\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625003965\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625003965","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Investigations on electronic structure and transport property modifications of La0.7Ca0.3-xKxMnO3 ceramics
The partial substitution of monovalent alkali metal K+ at the divalent Ca2+ site in La0.7Ca0.3MnO3 manganites (LCKMO) leads to remarkable structural, electronic, and magnetic modifications. This report combines structural, transport, magneto transport, and X-ray photoelectron spectroscopy (XPS) studies to examine these modifications in LCKMO samples with varying alkali metal content. X-ray diffraction (XRD) confirmed the orthorhombic crystal structure and single-phasic nature, while transport and magnetoresistance studies highlighted the effects of K+ substitution on the metal-insulator transition temperature (TP) and resistivity. X-ray Photoelectron Spectra (XPS) analysis decodes the Mn3+/Mn4+ mixed-valence states, providing insights into the Jahn-Teller (JT) distortions and double-exchange (DE) mechanisms manipulating the observed magnetic behaviour. These findings highlight the carping interplay of structural and electronic modifications in tailoring the functional properties of manganites for potential technological applications.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces