Hong Rae Kim , Ye Eun Lee , Eunkyo Lee , Dong-Eun Suh , Donggeun Choi , Sukkyoo Lee
{"title":"通过转录组和蛋白质组分析确定铜绿假单胞菌低密度聚乙烯氧化酶的特征","authors":"Hong Rae Kim , Ye Eun Lee , Eunkyo Lee , Dong-Eun Suh , Donggeun Choi , Sukkyoo Lee","doi":"10.1016/j.hazadv.2025.100726","DOIUrl":null,"url":null,"abstract":"<div><div>Plastics have become indispensable in modern industries; however, their resistance to natural degradation poses environmental challenges. Biological degradation technologies employing microorganisms offer promising solutions. Here, we analyzed the transcriptome and proteome of <em>Pseudomonas aeruginosa</em>, a plastic-degrading microorganism found in the gut of superworms, to identify the genes and enzymes upregulated during low-density polyethylene (LDPE) degradation. Functional analyses of these upregulated genes and enzymes using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases revealed an increase in lipid and hydrophobic amino acid metabolism, suggesting their involvement in LDPE degradation. Based on these analyses, we identified phenylalanine monooxygenase (PAH), which is capable of oxidizing plastics. To investigate the involvement of the enzyme in LDPE degradation, <em>phhA</em> was transformed into <em>Escherichia coli</em>, and the enzymes were produced and purified. The purified enzymes were then reacted with LDPE and analyzed. The results revealed the formation of hydroxyl (-OH) and C<img>O groups on the LDPE surface after treatment with PAH, confirming its ability to oxidize LDPE. LDPE is highly hydrophobic and exhibits extremely low reactivity, making it resistant to degradation. The PAH introduces oxygen-containing functional groups into LDPE, increasing its reactivity and thereby facilitating its biodegradation. In this study, we discovered an enzyme capable of catalyzing the oxidation step (the initial stage of LDPE biodegradation) and experimentally validated its activity.</div></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"18 ","pages":"Article 100726"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a low-density polyethylene-oxidizing enzyme in Pseudomonas aeruginosa via transcriptomic and proteomic analysis\",\"authors\":\"Hong Rae Kim , Ye Eun Lee , Eunkyo Lee , Dong-Eun Suh , Donggeun Choi , Sukkyoo Lee\",\"doi\":\"10.1016/j.hazadv.2025.100726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plastics have become indispensable in modern industries; however, their resistance to natural degradation poses environmental challenges. Biological degradation technologies employing microorganisms offer promising solutions. Here, we analyzed the transcriptome and proteome of <em>Pseudomonas aeruginosa</em>, a plastic-degrading microorganism found in the gut of superworms, to identify the genes and enzymes upregulated during low-density polyethylene (LDPE) degradation. Functional analyses of these upregulated genes and enzymes using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases revealed an increase in lipid and hydrophobic amino acid metabolism, suggesting their involvement in LDPE degradation. Based on these analyses, we identified phenylalanine monooxygenase (PAH), which is capable of oxidizing plastics. To investigate the involvement of the enzyme in LDPE degradation, <em>phhA</em> was transformed into <em>Escherichia coli</em>, and the enzymes were produced and purified. The purified enzymes were then reacted with LDPE and analyzed. The results revealed the formation of hydroxyl (-OH) and C<img>O groups on the LDPE surface after treatment with PAH, confirming its ability to oxidize LDPE. LDPE is highly hydrophobic and exhibits extremely low reactivity, making it resistant to degradation. The PAH introduces oxygen-containing functional groups into LDPE, increasing its reactivity and thereby facilitating its biodegradation. In this study, we discovered an enzyme capable of catalyzing the oxidation step (the initial stage of LDPE biodegradation) and experimentally validated its activity.</div></div>\",\"PeriodicalId\":73763,\"journal\":{\"name\":\"Journal of hazardous materials advances\",\"volume\":\"18 \",\"pages\":\"Article 100726\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277241662500138X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277241662500138X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Characterization of a low-density polyethylene-oxidizing enzyme in Pseudomonas aeruginosa via transcriptomic and proteomic analysis
Plastics have become indispensable in modern industries; however, their resistance to natural degradation poses environmental challenges. Biological degradation technologies employing microorganisms offer promising solutions. Here, we analyzed the transcriptome and proteome of Pseudomonas aeruginosa, a plastic-degrading microorganism found in the gut of superworms, to identify the genes and enzymes upregulated during low-density polyethylene (LDPE) degradation. Functional analyses of these upregulated genes and enzymes using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases revealed an increase in lipid and hydrophobic amino acid metabolism, suggesting their involvement in LDPE degradation. Based on these analyses, we identified phenylalanine monooxygenase (PAH), which is capable of oxidizing plastics. To investigate the involvement of the enzyme in LDPE degradation, phhA was transformed into Escherichia coli, and the enzymes were produced and purified. The purified enzymes were then reacted with LDPE and analyzed. The results revealed the formation of hydroxyl (-OH) and CO groups on the LDPE surface after treatment with PAH, confirming its ability to oxidize LDPE. LDPE is highly hydrophobic and exhibits extremely low reactivity, making it resistant to degradation. The PAH introduces oxygen-containing functional groups into LDPE, increasing its reactivity and thereby facilitating its biodegradation. In this study, we discovered an enzyme capable of catalyzing the oxidation step (the initial stage of LDPE biodegradation) and experimentally validated its activity.