Sathish Sundararaman , Sugapriya Dhanasekaran , Vickram A S , Aravind kumar J , Madarapu Yamini Priya , Sahana , Michael Rahul Soosai , Anu Santhanakrishnana , Pradeep Jangir , Mohammad Khishe , Gulothungan G
{"title":"先进材料在污染水基质解毒中的战略工程和功能机理阐释","authors":"Sathish Sundararaman , Sugapriya Dhanasekaran , Vickram A S , Aravind kumar J , Madarapu Yamini Priya , Sahana , Michael Rahul Soosai , Anu Santhanakrishnana , Pradeep Jangir , Mohammad Khishe , Gulothungan G","doi":"10.1016/j.rineng.2025.104851","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The 2030 Agenda contained 17 Sustainable Development Goals (SDGs), some of which support circular and sustainable production and consumption such as SDGs 11 and 12. One of the primary goals is also waste reduction and management. Agricultural waste is a significant obstacle with high potential for new value products under the circular bioeconomy approach. Reuse and recycling are essential to the circular economy, potentially enhancing waste value and reducing environmental harm. Using bio-waste, including pulp, stubble, seeds, leaves, and bagasse, to synthesise nanoparticles is an economical, low-energy, and ecofriendly method.</div></div><div><h3>Methods</h3><div>In order to solve wastewater treatment issues, recent research has concentrated on developing efficient and environmentally friendly biosorbents from agricultural waste. Finding locally accessible agricultural byproducts to remove dyes, and heavy metals has therefore become more crucial. An innovative and dependable way to enhance wastewater treatment and remediation is using nanotechnology. This includes making nanoparticles, hybrid nanocomposites in degrading or getting rid of contaminants from wastewater because of their improved surface characteristics and chemical reactivity.</div></div><div><h3>Significant Findings</h3><div>Research on agricultural waste management has had a significant increase recently, with 4688 publications published over the previous four years—comprising 77 % research articles and 23 % review papers. This review focus towards the methods to increase the effectiveness of biosorbents, recent progress made in the modification of adsorbents for the maximum removal of remove contaminants. The maximum adsorption capacities for nanobiosorbents at room temperature were found to be greater than 400 mg/g. According to the data, the BET/N2 specific surface varies from 1.311 m2/g to 23.9 m2/g. It was found that percentage removal of pollutants ranges from 85 % to 99.0 %. This study will contribute to developing more effective pollutant removal systems by bridging the gap between laboratory results and industrial applications and also the challenges with their mitigation measures.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"26 ","pages":"Article 104851"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic engineering and functional mechanism elucidation of advanced materials in detoxification of contaminated water matrices\",\"authors\":\"Sathish Sundararaman , Sugapriya Dhanasekaran , Vickram A S , Aravind kumar J , Madarapu Yamini Priya , Sahana , Michael Rahul Soosai , Anu Santhanakrishnana , Pradeep Jangir , Mohammad Khishe , Gulothungan G\",\"doi\":\"10.1016/j.rineng.2025.104851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The 2030 Agenda contained 17 Sustainable Development Goals (SDGs), some of which support circular and sustainable production and consumption such as SDGs 11 and 12. One of the primary goals is also waste reduction and management. Agricultural waste is a significant obstacle with high potential for new value products under the circular bioeconomy approach. Reuse and recycling are essential to the circular economy, potentially enhancing waste value and reducing environmental harm. Using bio-waste, including pulp, stubble, seeds, leaves, and bagasse, to synthesise nanoparticles is an economical, low-energy, and ecofriendly method.</div></div><div><h3>Methods</h3><div>In order to solve wastewater treatment issues, recent research has concentrated on developing efficient and environmentally friendly biosorbents from agricultural waste. Finding locally accessible agricultural byproducts to remove dyes, and heavy metals has therefore become more crucial. An innovative and dependable way to enhance wastewater treatment and remediation is using nanotechnology. This includes making nanoparticles, hybrid nanocomposites in degrading or getting rid of contaminants from wastewater because of their improved surface characteristics and chemical reactivity.</div></div><div><h3>Significant Findings</h3><div>Research on agricultural waste management has had a significant increase recently, with 4688 publications published over the previous four years—comprising 77 % research articles and 23 % review papers. This review focus towards the methods to increase the effectiveness of biosorbents, recent progress made in the modification of adsorbents for the maximum removal of remove contaminants. The maximum adsorption capacities for nanobiosorbents at room temperature were found to be greater than 400 mg/g. According to the data, the BET/N2 specific surface varies from 1.311 m2/g to 23.9 m2/g. It was found that percentage removal of pollutants ranges from 85 % to 99.0 %. This study will contribute to developing more effective pollutant removal systems by bridging the gap between laboratory results and industrial applications and also the challenges with their mitigation measures.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"26 \",\"pages\":\"Article 104851\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025009260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025009260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Strategic engineering and functional mechanism elucidation of advanced materials in detoxification of contaminated water matrices
Background
The 2030 Agenda contained 17 Sustainable Development Goals (SDGs), some of which support circular and sustainable production and consumption such as SDGs 11 and 12. One of the primary goals is also waste reduction and management. Agricultural waste is a significant obstacle with high potential for new value products under the circular bioeconomy approach. Reuse and recycling are essential to the circular economy, potentially enhancing waste value and reducing environmental harm. Using bio-waste, including pulp, stubble, seeds, leaves, and bagasse, to synthesise nanoparticles is an economical, low-energy, and ecofriendly method.
Methods
In order to solve wastewater treatment issues, recent research has concentrated on developing efficient and environmentally friendly biosorbents from agricultural waste. Finding locally accessible agricultural byproducts to remove dyes, and heavy metals has therefore become more crucial. An innovative and dependable way to enhance wastewater treatment and remediation is using nanotechnology. This includes making nanoparticles, hybrid nanocomposites in degrading or getting rid of contaminants from wastewater because of their improved surface characteristics and chemical reactivity.
Significant Findings
Research on agricultural waste management has had a significant increase recently, with 4688 publications published over the previous four years—comprising 77 % research articles and 23 % review papers. This review focus towards the methods to increase the effectiveness of biosorbents, recent progress made in the modification of adsorbents for the maximum removal of remove contaminants. The maximum adsorption capacities for nanobiosorbents at room temperature were found to be greater than 400 mg/g. According to the data, the BET/N2 specific surface varies from 1.311 m2/g to 23.9 m2/g. It was found that percentage removal of pollutants ranges from 85 % to 99.0 %. This study will contribute to developing more effective pollutant removal systems by bridging the gap between laboratory results and industrial applications and also the challenges with their mitigation measures.