骨钻孔中的热机械动力学和统计优化:通过多尺度建模和临床验证减轻热坏死的系统综述

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Reza Saeidi Abueshaghi , Farbod Setoudeh , Vahid Tahmasbi
{"title":"骨钻孔中的热机械动力学和统计优化:通过多尺度建模和临床验证减轻热坏死的系统综述","authors":"Reza Saeidi Abueshaghi ,&nbsp;Farbod Setoudeh ,&nbsp;Vahid Tahmasbi","doi":"10.1016/j.rineng.2025.104923","DOIUrl":null,"url":null,"abstract":"<div><div>This systematic review advances the field of bone drilling by synthesizing thermomechanical dynamics, computational modeling, and clinical validation into a cohesive framework for minimizing thermal necrosis and mechanical trauma. Diverging from prior studies that isolate thermal or mechanical factors, this work quantifies nonlinear interactions among drill geometry (point angle, helix angle, diamond coatings), operational parameters (feed rate: 10–50 <span><math><mfrac><mrow><mi>m</mi><mi>m</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></mfrac></math></span>, rotational speed: 500–2500 RPM), and bone heterogeneity (cortical bone) through advanced sensitivity analyses (Sobol indices, E-FAST) and multiscale predictive models (±5 % accuracy). By synthesizing data from 152 studies, this review proposes a patient-specific protocol matrix validated across diverse bone types. Key findings include the identification of optimal thresholds and hybrid cooling strategies, which collectively reduce thermal necrosis risk by 22–30 %. While AI-driven multi-objective optimization is briefly explored for dynamic parameter adaptation, the core focus lies in statistical methodologies and multiscale simulations (FEM/CFD) to enhance predictive precision. The study underscores the need for standardized surgical protocols and provides a roadmap for improving clinical outcomes through robust thermomechanical control.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"26 ","pages":"Article 104923"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermomechanical dynamics and statistical optimization in bone drilling: A systematic review on mitigating thermal necrosis through multiscale modeling and clinical validation\",\"authors\":\"Reza Saeidi Abueshaghi ,&nbsp;Farbod Setoudeh ,&nbsp;Vahid Tahmasbi\",\"doi\":\"10.1016/j.rineng.2025.104923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This systematic review advances the field of bone drilling by synthesizing thermomechanical dynamics, computational modeling, and clinical validation into a cohesive framework for minimizing thermal necrosis and mechanical trauma. Diverging from prior studies that isolate thermal or mechanical factors, this work quantifies nonlinear interactions among drill geometry (point angle, helix angle, diamond coatings), operational parameters (feed rate: 10–50 <span><math><mfrac><mrow><mi>m</mi><mi>m</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></mfrac></math></span>, rotational speed: 500–2500 RPM), and bone heterogeneity (cortical bone) through advanced sensitivity analyses (Sobol indices, E-FAST) and multiscale predictive models (±5 % accuracy). By synthesizing data from 152 studies, this review proposes a patient-specific protocol matrix validated across diverse bone types. Key findings include the identification of optimal thresholds and hybrid cooling strategies, which collectively reduce thermal necrosis risk by 22–30 %. While AI-driven multi-objective optimization is briefly explored for dynamic parameter adaptation, the core focus lies in statistical methodologies and multiscale simulations (FEM/CFD) to enhance predictive precision. The study underscores the need for standardized surgical protocols and provides a roadmap for improving clinical outcomes through robust thermomechanical control.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"26 \",\"pages\":\"Article 104923\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025009995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025009995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本系统综述通过将热力学动力学、计算建模和临床验证综合到一个内聚框架中,以最大限度地减少热坏死和机械创伤,从而推进骨钻孔领域。与之前的研究分离热或机械因素不同,这项研究通过先进的灵敏度分析(Sobol指数、E-FAST)和多尺度预测模型(±5%精度),量化了钻头几何形状(点角、螺旋角、金刚石涂层)、操作参数(进给速度:10-50毫米/分钟,转速:500-2500转/分钟)和骨非均质性(皮质骨)之间的非线性相互作用。通过综合152项研究的数据,本综述提出了一种针对不同骨类型的患者特异性方案矩阵。主要发现包括确定最佳阈值和混合冷却策略,这些策略共同降低了22 - 30%的热坏死风险。虽然简要探讨了人工智能驱动的多目标优化动态参数自适应,但核心重点在于统计方法和多尺度模拟(FEM/CFD),以提高预测精度。该研究强调了标准化手术方案的必要性,并为通过稳健的热机械控制改善临床结果提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermomechanical dynamics and statistical optimization in bone drilling: A systematic review on mitigating thermal necrosis through multiscale modeling and clinical validation
This systematic review advances the field of bone drilling by synthesizing thermomechanical dynamics, computational modeling, and clinical validation into a cohesive framework for minimizing thermal necrosis and mechanical trauma. Diverging from prior studies that isolate thermal or mechanical factors, this work quantifies nonlinear interactions among drill geometry (point angle, helix angle, diamond coatings), operational parameters (feed rate: 10–50 mmmin, rotational speed: 500–2500 RPM), and bone heterogeneity (cortical bone) through advanced sensitivity analyses (Sobol indices, E-FAST) and multiscale predictive models (±5 % accuracy). By synthesizing data from 152 studies, this review proposes a patient-specific protocol matrix validated across diverse bone types. Key findings include the identification of optimal thresholds and hybrid cooling strategies, which collectively reduce thermal necrosis risk by 22–30 %. While AI-driven multi-objective optimization is briefly explored for dynamic parameter adaptation, the core focus lies in statistical methodologies and multiscale simulations (FEM/CFD) to enhance predictive precision. The study underscores the need for standardized surgical protocols and provides a roadmap for improving clinical outcomes through robust thermomechanical control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信