基于颗粒有限元法的深埋巷道岩爆模拟:从递进退化到突变喷射

IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Liang Wang , Qinghua Lei
{"title":"基于颗粒有限元法的深埋巷道岩爆模拟:从递进退化到突变喷射","authors":"Liang Wang ,&nbsp;Qinghua Lei","doi":"10.1016/j.ijrmms.2025.106131","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a novel computational framework based on the particle finite element method for simulating rockburst phenomena, from pre-failure initiation to failure evolution and to post-failure mobilisation and ejection, across spatiotemporal scales in hard rocks. The proposed framework builds upon a rigorously validated and extensively calibrated particle finite element model, distinguished by its unique capability to handle large deformation problems. This framework can simultaneously capture the creep damage mechanism based on a time-dependent strength degradation model and the brittle fracturing process based on a cohesion loss-frictional strengthening model. The post-failure mobilisation is further governed by a frictional weakening formulation to capture the associated stress drop behaviour. We consider the intrinsic material heterogeneity assuming a Weibull distribution of rock mass properties and represent the nearby fault zone as a thin continuum layer with equivalent mechanical properties. We apply the model to investigate the processes and phenomena of deep tunnelling-induced rockbursts under different stress and heterogeneity conditions. Our simulation results, grounded in a thoroughly validated modelling framework, yield insights with important implications for understanding and predicting catastrophic rockbursts during deep tunnel excavation. While further site-specific calibration would be required for practical application, the current framework demonstrates strong potential as a predictive tool for evaluating rockburst hazards in complex geological settings.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"191 ","pages":"Article 106131"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling rockbursts around a deep tunnel based on the particle finite element method: From progressive degradation to catastrophic ejection\",\"authors\":\"Liang Wang ,&nbsp;Qinghua Lei\",\"doi\":\"10.1016/j.ijrmms.2025.106131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a novel computational framework based on the particle finite element method for simulating rockburst phenomena, from pre-failure initiation to failure evolution and to post-failure mobilisation and ejection, across spatiotemporal scales in hard rocks. The proposed framework builds upon a rigorously validated and extensively calibrated particle finite element model, distinguished by its unique capability to handle large deformation problems. This framework can simultaneously capture the creep damage mechanism based on a time-dependent strength degradation model and the brittle fracturing process based on a cohesion loss-frictional strengthening model. The post-failure mobilisation is further governed by a frictional weakening formulation to capture the associated stress drop behaviour. We consider the intrinsic material heterogeneity assuming a Weibull distribution of rock mass properties and represent the nearby fault zone as a thin continuum layer with equivalent mechanical properties. We apply the model to investigate the processes and phenomena of deep tunnelling-induced rockbursts under different stress and heterogeneity conditions. Our simulation results, grounded in a thoroughly validated modelling framework, yield insights with important implications for understanding and predicting catastrophic rockbursts during deep tunnel excavation. While further site-specific calibration would be required for practical application, the current framework demonstrates strong potential as a predictive tool for evaluating rockburst hazards in complex geological settings.</div></div>\",\"PeriodicalId\":54941,\"journal\":{\"name\":\"International Journal of Rock Mechanics and Mining Sciences\",\"volume\":\"191 \",\"pages\":\"Article 106131\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rock Mechanics and Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136516092500108X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136516092500108X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种基于颗粒有限元方法的新型计算框架,用于模拟岩爆现象,从破坏前开始到破坏演化,再到破坏后的动员和喷射,跨越硬岩石的时空尺度。提出的框架建立在严格验证和广泛校准的颗粒有限元模型上,以其处理大变形问题的独特能力而闻名。该框架可以同时捕捉基于时间相关强度退化模型的蠕变损伤机制和基于黏聚损失-摩擦强化模型的脆性破裂过程。失效后的动员进一步由摩擦弱化公式控制,以捕获相关的应力下降行为。我们假定岩体性质为威布尔分布,并将附近断裂带表示为具有等效力学性质的薄连续层。应用该模型研究了不同应力和非均质性条件下深部隧道岩爆的过程和现象。我们的模拟结果基于经过彻底验证的建模框架,对理解和预测深隧道开挖过程中的灾难性岩爆具有重要意义。虽然实际应用需要进一步的现场特定校准,但目前的框架显示出强大的潜力,可以作为评估复杂地质环境中岩爆危害的预测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling rockbursts around a deep tunnel based on the particle finite element method: From progressive degradation to catastrophic ejection
We develop a novel computational framework based on the particle finite element method for simulating rockburst phenomena, from pre-failure initiation to failure evolution and to post-failure mobilisation and ejection, across spatiotemporal scales in hard rocks. The proposed framework builds upon a rigorously validated and extensively calibrated particle finite element model, distinguished by its unique capability to handle large deformation problems. This framework can simultaneously capture the creep damage mechanism based on a time-dependent strength degradation model and the brittle fracturing process based on a cohesion loss-frictional strengthening model. The post-failure mobilisation is further governed by a frictional weakening formulation to capture the associated stress drop behaviour. We consider the intrinsic material heterogeneity assuming a Weibull distribution of rock mass properties and represent the nearby fault zone as a thin continuum layer with equivalent mechanical properties. We apply the model to investigate the processes and phenomena of deep tunnelling-induced rockbursts under different stress and heterogeneity conditions. Our simulation results, grounded in a thoroughly validated modelling framework, yield insights with important implications for understanding and predicting catastrophic rockbursts during deep tunnel excavation. While further site-specific calibration would be required for practical application, the current framework demonstrates strong potential as a predictive tool for evaluating rockburst hazards in complex geological settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信