Peng Hong , Fuyan Zhao , Haiyan Lei , Guiling Wang , Chuanshan Dai
{"title":"一种改进的叠合网格地热井筒模拟方法","authors":"Peng Hong , Fuyan Zhao , Haiyan Lei , Guiling Wang , Chuanshan Dai","doi":"10.1016/j.geothermics.2025.103345","DOIUrl":null,"url":null,"abstract":"<div><div>Since temperature and pressure disturbances in geothermal reservoirs are mainly caused by production and injection activities through wellbores, establishing an accurate wellbore model is crucial. However, due to significant size discrepancies between wellbores and reservoirs, accurately resolving the wellbore geometry requires a large number of mesh cells, which seriously reduces computational efficiency. A commonly used method to reduce the mesh cell number is simplifying the wellbore geometry as a point (in 2D) or a line (in 3D). However, existing modeling methods for this simplified wellbore geometry introduce additional errors. To improve calculation accuracy without reducing computational efficiency, we propose an overlapping mesh modeling method, which incorporates one overlapping cell for each wellbore, enabling the wellbore geometry to be considered without impacting the reservoir mesh generation. The wellbore cell can exchange mass and energy with the reservoir cells it covers, ensuring that the temperature and pressure disturbances caused by wells can be simulated accurately. Four benchmark cases were used to verify the present method. The results show that, compared to existing simplified wellbore modeling methods, the present method reduces hydraulic head errors by 1 to 2 m and temperature errors by 1 to 2 ℃ in the vicinity of the wellbore, while the additional computational cost is negligible.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"130 ","pages":"Article 103345"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved modeling method using overlapping meshes for geothermal wellbore simulation\",\"authors\":\"Peng Hong , Fuyan Zhao , Haiyan Lei , Guiling Wang , Chuanshan Dai\",\"doi\":\"10.1016/j.geothermics.2025.103345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since temperature and pressure disturbances in geothermal reservoirs are mainly caused by production and injection activities through wellbores, establishing an accurate wellbore model is crucial. However, due to significant size discrepancies between wellbores and reservoirs, accurately resolving the wellbore geometry requires a large number of mesh cells, which seriously reduces computational efficiency. A commonly used method to reduce the mesh cell number is simplifying the wellbore geometry as a point (in 2D) or a line (in 3D). However, existing modeling methods for this simplified wellbore geometry introduce additional errors. To improve calculation accuracy without reducing computational efficiency, we propose an overlapping mesh modeling method, which incorporates one overlapping cell for each wellbore, enabling the wellbore geometry to be considered without impacting the reservoir mesh generation. The wellbore cell can exchange mass and energy with the reservoir cells it covers, ensuring that the temperature and pressure disturbances caused by wells can be simulated accurately. Four benchmark cases were used to verify the present method. The results show that, compared to existing simplified wellbore modeling methods, the present method reduces hydraulic head errors by 1 to 2 m and temperature errors by 1 to 2 ℃ in the vicinity of the wellbore, while the additional computational cost is negligible.</div></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":\"130 \",\"pages\":\"Article 103345\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650525000975\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650525000975","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
An improved modeling method using overlapping meshes for geothermal wellbore simulation
Since temperature and pressure disturbances in geothermal reservoirs are mainly caused by production and injection activities through wellbores, establishing an accurate wellbore model is crucial. However, due to significant size discrepancies between wellbores and reservoirs, accurately resolving the wellbore geometry requires a large number of mesh cells, which seriously reduces computational efficiency. A commonly used method to reduce the mesh cell number is simplifying the wellbore geometry as a point (in 2D) or a line (in 3D). However, existing modeling methods for this simplified wellbore geometry introduce additional errors. To improve calculation accuracy without reducing computational efficiency, we propose an overlapping mesh modeling method, which incorporates one overlapping cell for each wellbore, enabling the wellbore geometry to be considered without impacting the reservoir mesh generation. The wellbore cell can exchange mass and energy with the reservoir cells it covers, ensuring that the temperature and pressure disturbances caused by wells can be simulated accurately. Four benchmark cases were used to verify the present method. The results show that, compared to existing simplified wellbore modeling methods, the present method reduces hydraulic head errors by 1 to 2 m and temperature errors by 1 to 2 ℃ in the vicinity of the wellbore, while the additional computational cost is negligible.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.