Ilythia D. Morley , Kevin Hanna , Chris T. Darimont , Mathieu L. Bourbonnais , Ilythia D. Morley
{"title":"1997 - 2019年加拿大不列颠哥伦比亚省中西部生物地理气候生态系统分类带时空变化的时间序列模拟","authors":"Ilythia D. Morley , Kevin Hanna , Chris T. Darimont , Mathieu L. Bourbonnais , Ilythia D. Morley","doi":"10.1016/j.ecoinf.2025.103155","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the spatial extent and temporal variability of ecosystem processes is essential for contextualizing land use and land cover change due to disturbance. In this study, we apply an advanced time series modelling method to assess and map ecosystem change and characterize ecosystem cover in west-central British Columbia, Canada. We couple Biogeoclimatic Ecosystem Classification (BEC) zone data with metrics derived from Landsat imagery to model how biogeoclimatic ecosystem cover, interpreted as an indicator of shifting vegetation seasonality, varies over a broad spatiotemporal scale. To do so, we apply the Time-Weighted Dynamic Time Warping (TWDTW) time series modelling approach by relating the spectral characteristics of Landsat data and derived indices from 1997 to 2019. Results highlight important transitions between biogeoclimatic ecosystem classes, with a transition of the interior Douglas-fir Dry to the montane-spruce Dry and the Sub-Boreal Pine to the Spruce zone Dry zones in response to large wildfires in 2003 and 2009. The assessment of ecosystem change across broad spatial and temporal scales is important for assessing the cumulative impacts of changes across highly variable landscapes on essential landscape services.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"88 ","pages":"Article 103155"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time series modelling spatiotemporal changes in Biogeoclimatic ecosystem classification (BEC) zones between 1997 and 2019 in West-Central British Columbia, Canada\",\"authors\":\"Ilythia D. Morley , Kevin Hanna , Chris T. Darimont , Mathieu L. Bourbonnais , Ilythia D. Morley\",\"doi\":\"10.1016/j.ecoinf.2025.103155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the spatial extent and temporal variability of ecosystem processes is essential for contextualizing land use and land cover change due to disturbance. In this study, we apply an advanced time series modelling method to assess and map ecosystem change and characterize ecosystem cover in west-central British Columbia, Canada. We couple Biogeoclimatic Ecosystem Classification (BEC) zone data with metrics derived from Landsat imagery to model how biogeoclimatic ecosystem cover, interpreted as an indicator of shifting vegetation seasonality, varies over a broad spatiotemporal scale. To do so, we apply the Time-Weighted Dynamic Time Warping (TWDTW) time series modelling approach by relating the spectral characteristics of Landsat data and derived indices from 1997 to 2019. Results highlight important transitions between biogeoclimatic ecosystem classes, with a transition of the interior Douglas-fir Dry to the montane-spruce Dry and the Sub-Boreal Pine to the Spruce zone Dry zones in response to large wildfires in 2003 and 2009. The assessment of ecosystem change across broad spatial and temporal scales is important for assessing the cumulative impacts of changes across highly variable landscapes on essential landscape services.</div></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":\"88 \",\"pages\":\"Article 103155\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574954125001645\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125001645","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Time series modelling spatiotemporal changes in Biogeoclimatic ecosystem classification (BEC) zones between 1997 and 2019 in West-Central British Columbia, Canada
Understanding the spatial extent and temporal variability of ecosystem processes is essential for contextualizing land use and land cover change due to disturbance. In this study, we apply an advanced time series modelling method to assess and map ecosystem change and characterize ecosystem cover in west-central British Columbia, Canada. We couple Biogeoclimatic Ecosystem Classification (BEC) zone data with metrics derived from Landsat imagery to model how biogeoclimatic ecosystem cover, interpreted as an indicator of shifting vegetation seasonality, varies over a broad spatiotemporal scale. To do so, we apply the Time-Weighted Dynamic Time Warping (TWDTW) time series modelling approach by relating the spectral characteristics of Landsat data and derived indices from 1997 to 2019. Results highlight important transitions between biogeoclimatic ecosystem classes, with a transition of the interior Douglas-fir Dry to the montane-spruce Dry and the Sub-Boreal Pine to the Spruce zone Dry zones in response to large wildfires in 2003 and 2009. The assessment of ecosystem change across broad spatial and temporal scales is important for assessing the cumulative impacts of changes across highly variable landscapes on essential landscape services.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.