Xiaolan Wang MSc , Shuanglan Xu PhD , Qian Liu MSc , Xiulin Ye MSc , Huilin He BS , Xifeng Zhang MSc , Linna Chen BS , Jiao Yang MSc , Xiqian Xing MSc
{"title":"纳米材料在静脉血栓栓塞诊治中的应用研究进展","authors":"Xiaolan Wang MSc , Shuanglan Xu PhD , Qian Liu MSc , Xiulin Ye MSc , Huilin He BS , Xifeng Zhang MSc , Linna Chen BS , Jiao Yang MSc , Xiqian Xing MSc","doi":"10.1016/j.nano.2025.102820","DOIUrl":null,"url":null,"abstract":"<div><div>Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is a serious vascular disease with hidden symptoms and rapid progression. Nanomaterials provide new ideas for the diagnosis and treatment of VTE due to their high specific surface area, biocompatibility and modifiability. Due to differences in the formation mechanism and location of arterial and venous thrombosis, targeted diagnosis and treatment strategies need to be developed. This review focuses on VTE and summarizes the latest progress and limitations of nanomaterials in diagnosis and treatment. In terms of diagnosis, nanomaterials can be used to prepare biosensors to detect thrombin, fibrin, etc., and can also enhance imaging contrast to improve diagnostic accuracy. In terms of treatment, nanocarriers can target and release anticoagulant/thrombolytic drugs, improving efficacy and reducing side effects. However, the limitations of nanomaterials require researchers to optimize their properties to achieve safe and efficient development of VTE diagnosis and treatment.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"66 ","pages":"Article 102820"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on the application of nanomaterials in the diagnosis and treatment of venous thromboembolism\",\"authors\":\"Xiaolan Wang MSc , Shuanglan Xu PhD , Qian Liu MSc , Xiulin Ye MSc , Huilin He BS , Xifeng Zhang MSc , Linna Chen BS , Jiao Yang MSc , Xiqian Xing MSc\",\"doi\":\"10.1016/j.nano.2025.102820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is a serious vascular disease with hidden symptoms and rapid progression. Nanomaterials provide new ideas for the diagnosis and treatment of VTE due to their high specific surface area, biocompatibility and modifiability. Due to differences in the formation mechanism and location of arterial and venous thrombosis, targeted diagnosis and treatment strategies need to be developed. This review focuses on VTE and summarizes the latest progress and limitations of nanomaterials in diagnosis and treatment. In terms of diagnosis, nanomaterials can be used to prepare biosensors to detect thrombin, fibrin, etc., and can also enhance imaging contrast to improve diagnostic accuracy. In terms of treatment, nanocarriers can target and release anticoagulant/thrombolytic drugs, improving efficacy and reducing side effects. However, the limitations of nanomaterials require researchers to optimize their properties to achieve safe and efficient development of VTE diagnosis and treatment.</div></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"66 \",\"pages\":\"Article 102820\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963425000206\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963425000206","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Research progress on the application of nanomaterials in the diagnosis and treatment of venous thromboembolism
Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is a serious vascular disease with hidden symptoms and rapid progression. Nanomaterials provide new ideas for the diagnosis and treatment of VTE due to their high specific surface area, biocompatibility and modifiability. Due to differences in the formation mechanism and location of arterial and venous thrombosis, targeted diagnosis and treatment strategies need to be developed. This review focuses on VTE and summarizes the latest progress and limitations of nanomaterials in diagnosis and treatment. In terms of diagnosis, nanomaterials can be used to prepare biosensors to detect thrombin, fibrin, etc., and can also enhance imaging contrast to improve diagnostic accuracy. In terms of treatment, nanocarriers can target and release anticoagulant/thrombolytic drugs, improving efficacy and reducing side effects. However, the limitations of nanomaterials require researchers to optimize their properties to achieve safe and efficient development of VTE diagnosis and treatment.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.