利用量子化学描述符预测对小头蛇的化学毒性

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xinliang Yu
{"title":"利用量子化学描述符预测对小头蛇的化学毒性","authors":"Xinliang Yu","doi":"10.1016/j.algal.2025.104055","DOIUrl":null,"url":null,"abstract":"<div><div>The green alga <em>Raphidocelis subcapitata</em> is an important model organism in toxicity studies. This paper, for the first time, reported classification models for <em>Raphidocelis subcapitata</em> toxicities (pEC<sub>50</sub> and pEC<sub>10</sub>), by applying 43 quantum chemical descriptors and the random forest algorithm. Both classification models for the toxicities pEC<sub>50</sub> and pEC<sub>10</sub> have prediction accuracy values of 100 % for the training set (251 organics) and above 90 % for the test set (83 organics). The quantum chemical descriptors selected include atomic charges, multipole moments, frontier orbital energies and kinetic energies, polarizability and thermochemistry properties. They are related to reaction sites, electrophilic and nucleophilic reactivity, chemical bond formation, hydrogen bonds and electrostatic force. The two classification models based on a sufficiently large sample set provide an important tool for assessing the toxicity categories of organics towards <em>Raphidocelis subcapitata</em>.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"89 ","pages":"Article 104055"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting chemical toxicity towards Raphidocelis subcapitata with quantum chemical descriptors\",\"authors\":\"Xinliang Yu\",\"doi\":\"10.1016/j.algal.2025.104055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The green alga <em>Raphidocelis subcapitata</em> is an important model organism in toxicity studies. This paper, for the first time, reported classification models for <em>Raphidocelis subcapitata</em> toxicities (pEC<sub>50</sub> and pEC<sub>10</sub>), by applying 43 quantum chemical descriptors and the random forest algorithm. Both classification models for the toxicities pEC<sub>50</sub> and pEC<sub>10</sub> have prediction accuracy values of 100 % for the training set (251 organics) and above 90 % for the test set (83 organics). The quantum chemical descriptors selected include atomic charges, multipole moments, frontier orbital energies and kinetic energies, polarizability and thermochemistry properties. They are related to reaction sites, electrophilic and nucleophilic reactivity, chemical bond formation, hydrogen bonds and electrostatic force. The two classification models based on a sufficiently large sample set provide an important tool for assessing the toxicity categories of organics towards <em>Raphidocelis subcapitata</em>.</div></div>\",\"PeriodicalId\":7855,\"journal\":{\"name\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"volume\":\"89 \",\"pages\":\"Article 104055\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221192642500164X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221192642500164X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

绿藻类Raphidocelis subcapitata是毒性研究中重要的模式生物。本文首次利用43个量子化学描述符和随机森林算法,建立了Raphidocelis subcapitata毒性(pEC50和pEC10)的分类模型。两种毒性分类模型pEC50和pEC10对训练集(251种有机物)的预测准确率均为100%,对测试集(83种有机物)的预测准确率均在90%以上。所选择的量子化学描述符包括原子电荷、多极矩、前沿轨道能量和动能、极化率和热化学性质。它们与反应位置、亲电性和亲核性、化学键形成、氢键和静电力有关。这两种基于足够大样本集的分类模型为评估有机物对小头Raphidocelis的毒性类别提供了重要的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting chemical toxicity towards Raphidocelis subcapitata with quantum chemical descriptors
The green alga Raphidocelis subcapitata is an important model organism in toxicity studies. This paper, for the first time, reported classification models for Raphidocelis subcapitata toxicities (pEC50 and pEC10), by applying 43 quantum chemical descriptors and the random forest algorithm. Both classification models for the toxicities pEC50 and pEC10 have prediction accuracy values of 100 % for the training set (251 organics) and above 90 % for the test set (83 organics). The quantum chemical descriptors selected include atomic charges, multipole moments, frontier orbital energies and kinetic energies, polarizability and thermochemistry properties. They are related to reaction sites, electrophilic and nucleophilic reactivity, chemical bond formation, hydrogen bonds and electrostatic force. The two classification models based on a sufficiently large sample set provide an important tool for assessing the toxicity categories of organics towards Raphidocelis subcapitata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信