学习小行动空间的最优契约

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Francesco Bacchiocchi, Matteo Castiglioni, Nicola Gatti, Alberto Marchesi
{"title":"学习小行动空间的最优契约","authors":"Francesco Bacchiocchi,&nbsp;Matteo Castiglioni,&nbsp;Nicola Gatti,&nbsp;Alberto Marchesi","doi":"10.1016/j.artint.2025.104334","DOIUrl":null,"url":null,"abstract":"<div><div>We study <em>principal-agent problems</em> in which a principal commits to an outcome-dependent payment scheme—called <em>contract</em>—in order to induce an agent to take a costly, unobservable action leading to favorable outcomes. We consider a generalization of the classical (single-round) version of the problem in which the principal interacts with the agent by committing to contracts over multiple rounds. The principal has no information about the agent, and they have to learn an optimal contract by only observing the outcome realized at each round. We focus on settings in which the <em>size of the agent's action space is small</em>. We design an algorithm that learns an approximately-optimal contract with high probability in a number of rounds polynomial in the size of the outcome space, when the number of actions is constant. Our algorithm solves an open problem by Zhu et al. <span><span>[1]</span></span>. Moreover, it can also be employed to provide a <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>5</mn></mrow></msup><mo>)</mo></math></span> regret bound in the related online learning setting in which the principal aims at maximizing their cumulative utility over rounds, considerably improving previously-known regret bounds.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"344 ","pages":"Article 104334"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning optimal contracts with small action spaces\",\"authors\":\"Francesco Bacchiocchi,&nbsp;Matteo Castiglioni,&nbsp;Nicola Gatti,&nbsp;Alberto Marchesi\",\"doi\":\"10.1016/j.artint.2025.104334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study <em>principal-agent problems</em> in which a principal commits to an outcome-dependent payment scheme—called <em>contract</em>—in order to induce an agent to take a costly, unobservable action leading to favorable outcomes. We consider a generalization of the classical (single-round) version of the problem in which the principal interacts with the agent by committing to contracts over multiple rounds. The principal has no information about the agent, and they have to learn an optimal contract by only observing the outcome realized at each round. We focus on settings in which the <em>size of the agent's action space is small</em>. We design an algorithm that learns an approximately-optimal contract with high probability in a number of rounds polynomial in the size of the outcome space, when the number of actions is constant. Our algorithm solves an open problem by Zhu et al. <span><span>[1]</span></span>. Moreover, it can also be employed to provide a <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>5</mn></mrow></msup><mo>)</mo></math></span> regret bound in the related online learning setting in which the principal aims at maximizing their cumulative utility over rounds, considerably improving previously-known regret bounds.</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"344 \",\"pages\":\"Article 104334\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370225000530\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225000530","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们研究委托代理问题,其中委托人承诺一个结果依赖的支付方案-称为合同-以诱使代理人采取昂贵的,不可观察的行动,导致有利的结果。我们考虑了经典(单轮)版本问题的一般化,其中委托人通过在多轮中承诺合同与代理人进行交互。委托人没有关于代理人的信息,他们只能通过观察每轮实现的结果来学习最优契约。我们关注的是智能体动作空间较小的设置。我们设计了一种算法,该算法在结果空间大小的数轮多项式中以高概率学习近似最优契约,当动作数量恒定时。我们的算法解决了Zhu等人提出的一个开放问题。此外,它还可以用于在相关的在线学习设置中提供O ~ (T4/5)遗憾界限,其中校长的目标是最大化他们在几轮中的累积效用,大大改善了先前已知的遗憾界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning optimal contracts with small action spaces
We study principal-agent problems in which a principal commits to an outcome-dependent payment scheme—called contract—in order to induce an agent to take a costly, unobservable action leading to favorable outcomes. We consider a generalization of the classical (single-round) version of the problem in which the principal interacts with the agent by committing to contracts over multiple rounds. The principal has no information about the agent, and they have to learn an optimal contract by only observing the outcome realized at each round. We focus on settings in which the size of the agent's action space is small. We design an algorithm that learns an approximately-optimal contract with high probability in a number of rounds polynomial in the size of the outcome space, when the number of actions is constant. Our algorithm solves an open problem by Zhu et al. [1]. Moreover, it can also be employed to provide a O˜(T4/5) regret bound in the related online learning setting in which the principal aims at maximizing their cumulative utility over rounds, considerably improving previously-known regret bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信